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Abstract

In this paper, we analyse the different parameter choices for fitting
B-spline curves. New estimating criteria for data approximation are
introduced in order to estimate the results. The definitions of norms
correspond to a global analysis of the curve. Other criteria are based
on a local analysis. We present a new method for data compression
using fitting B-splines and compare it to usual ones.

Keywords: Data compression, estimating criteria, fitting B-
splines.

1 INTRODUCTION

Data compression relative to curves is a frequent problem in many
applications. Many papers have already been published. Two trends
can be emphasized. The first one deals with polygonalcurves for ap-
proximating data (see subsection 4.1.1). Another approach was de-
veloped by Tom Lyche and Knut Morken [18]. Their method is rep-
resentative of knot removal strategies. Matthias Eck and Jan Haden-
feld’s strategy [10] is complementary to Lyche and Morken’s. We
suggest a different technique using fitting B-splines.

In section 2, we remind the reader of the general problem of
data fitting with B-splines: a general form for solving this problem
and the choices of knot vector, approximating parameters and de-
gree. The usual parameterization techniques have been taken into
account as well as the Foley and Nielson methods [12] and the in-
trinsic Hoschek parameterization [13].

In order to estimate the results we introduce two different tools in
section 3. The first one corresponds to a global analysis and a defini-
tion of norms. It estimates whether one approximation is better than
another according to a tolerance criterion. These norms take into ac-
count the oscillating phenomenon which may occur. The other es-
timating tool yields a local analysis. The notion of local estimation
is introduced to avoid dependence on parameter values.

Section 4 deals with data compression strategies. In subsection
4.1, we propose a survey of current methods. Our data compres-
sion technique using a local approach based on curve analysis is in-
troduced in subsection 4.2. A bisection method on the number of
control points can be applied: to decrease errors one has to globally
increase the number of control points. Lastly, we compare our data
compression technique to usual ones in section 5 according to com-
pression rates and computation costs.

2 DATA FITTING WITH B-SPLINE
CURVES

B-spline functions are often used for curve modelling. This basis
is fairly well conditioned and has many other nice properties which

usually lead to stable and simple algorithms. Basic properties of
splines and B-splines can be found in [8, 11].

2.1 Least squares fitting

The formulation of our fitting problem is to define, for a set of (n+
1) different ordered points P = (p0; :::; pn) in a space IRd, a B-
spline curve f as close as possible to data pi . We briefly present our
notations. Let

� k be the B-spline curve order (degree+1) with k � m,

� T = (ti)
m+k
i=0 be the knot vector defined by a non-decreasing

sequence of numbers so that t0 = t1 = ::: = tk�1 < tk ,
tm < tm+1 = tm+2 = ::: = tm+k and ti < ti+1 (k � 1 �
i �m),

� (�i)
n
i=0 be (n+ 1) parameter values,

� (Qi)
m
i=0 be (m+ 1) control points.

Associated B-spline curve f is defined by:

f(t) =

mX
j=0

QjNj;k;T (t) Qj = (Q1j ; :::;Qdj)
T 2 IR

d (1)

where functions Nj;k;T are the normalized basis functions com-
puted with the De Boor formula. The least squares fitting problem
searches for control points (Qj)

m
j=0 of curve f so that (n+1) points

f(�i) produce a least squares smoothing of the set of points pi . The
problem is to find control points Qj so that:

nX
i=0

(f(�i)� pi)
2 is minimum. (2)

We assume thatm < n in order to really obtain a fitting problem.
Since (2) corresponds to the minimization of the sum of d indepen-
dent positive quantities (one per coordinate), it is equivalent to d in-
dependentminimizations, one per coordinate. With a matrix formu-
lation,Mq andMp being respectively the (m+1; d) and (n+1; d)
matrices of points Qi and pi , we have to find a matrix Mq which
minimizes the norm of each column vector Ei (i = 1; :::; d) of the
matrix A:Mq �Mp. The problem is expressed in the matrix form
(system of normal equations) by:

AT :A:Mq = AT :Mp

This formulation is associated with a square matrix with an often
high condition number involving potential numerical difficulties or
bad results. Actually, the condition number of the matrix AT :A is
the square of the condition number of A (in 2-norm). Therefore, the
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results are necessarily better when solving the overdetermined sys-
tem A:Mq = Mp (system (n+1; m+ 1)) by a least squares tech-
nique through a Q:R matrix decomposition. This equivalent theo-
retical formulation of the initial problem guarantees far better nu-
merical results, with far fewer computations [7].

We should now specify:

� knot vector T ,
� (n + 1) parameter values �i,
� order k.

These three components are very important for obtaining fair results
in approximation and in interpolation.

2.2 Knot vector

Knot vector T can be uniform or defined from an extension of the
De Boor formula for interpolation [6]:

8<
:

t0 = ::: = tk�1 = �0
tm+1 = ::: = tm+k = �n

ti+k =
�i+l1

+:::+�i+l2
l2�l1+1

for i = 0; :::;m� k
(3)

The extreme values of l1 and l2 are fixed by the compatibility
with interpolation. If l1 and l2 are constants, the number of �i in the
summation depends on m. If this number is fixed (equal to k � 1),
this implies that l1 and l2 are functions of i. Choosing constant val-
ues for l1 and l2 is not satisfactory as soon as an important difference
between n andm exists. As a matter of fact, the number of �i in the
summation is then high, and all the knots are located near an aver-
age value. Simple rules of variation for l1 and l2 must be found. The
following ones are compatible with the interpolation problem:

l1(i) = E(
n�m

m� k
i) + 1 (4)

l2(i) = E(
n�m

m� k
i) + k � 1 (5)

E(x) being the truncated integer (x + 0.5).

These functions give all different knots and provide a good dis-
tribution between parameters �i and knots ti. We obtain in the par-
ticular casem = k:

tk =
�1+:::+�m�1

m�1

The number of control points can continuously increase from a
low value up to n + 1. Interpolation and least squares fitting have
exactly the same processing formulation (3).

2.3 Parameterization

This is a difficult problem and some solutions are proposed. The
poorest one is a uniform spacing. Points pi are assumed to be dif-
ferent providing the definition of a strictly increasing sequence of
parameters. A parameter distribution using arc lengths was tested.
The possible improvement does not justify this iterative method.
The chord length parameterization is commonly proposed. Lee de-
fined a centripetal parameterization and its general formulation [17]:
8<
:

�0 = 0

�i =

P
i

j=1

kpj�pj�1k
eP

n

j=1
kpj�pj�1k

e
c i = 1; :::;n (0 � e � 1)

(6)

We obtain respectively a uniform, chord length and centripetal
model, with a parameter e equal to 0, 1 and 0.5. c is a constant ex-
panding the distribution (to reduce numerical problems).

Two spacings have been proposed by Foley and Nielson [12].
The authors call them respectively the affine invariant chord spac-
ing and the affine invariant angle spacing. They both use a distance
deduced from statistical theory. The second spacing takes into ac-
count the angles between the different line segments joining the data
points. The latter is particularly efficient when important variations
in the angles occur. The authors prove the interesting result that with
these parameterizations, the spline interpolation method is affine in-
variant. This means that we obtain the same result by applying an
affine transformation to a spline fitting curve and by computing the
spline fitting once the affine transformation has been applied to the
given points. This is of importance in a CAD system where geomet-
ric transformations often occur. It must be noticed that the parame-
terization defined by (6) satisfies this property except if the transfor-
mation is a non homogeneousscaling. These properties are deduced
from the fact that spacings are not modified by such transformations
[12] (it is obvious that translations, rotations and homogeneousscal-
ings remain the spacings defined by (6) unchanged).

In Hoschek’s paper [13], an iterative approach is proposed to
find intrinsic parameter values leading to a better approximation.
Hoschek’s concept is to find a sequence of new parameter values ~�i
for which corresponding points on f are closer to data pi than latter
�i. Then we start the least squares process again with the new pa-
rameter values and repeat these steps until all error vectorspi�f(~�i)
are approximately orthogonal to the approximating curve. At each
step of the process correction parameters ~�i are computed. But for a
fixed B-spline curve, they do not correspond to the closest approx-
imations of data pi . We suggest replacing them by parameters ��i
whose values on the B-spline curve are now the closest approxima-
tions of data [24]. We can apply descent algorithms to move along
the curve and reach these optimal parameters ��i (see subsection 3.2).
The result is a better global approximation with a faster convergence
speed.

2.4 Degree

Order k can be defined with regard to:

� computation speed: the higher the degree, the slowest the
computations.

� shape modelling: the higher the degree, the higher the number
of shapes which could be modelled. An order 2 produces fair
approximations of line segments. An order 4 (cubic B-spline
curves) is commonly used for having fair approximations of
parabolic sections and for producing inflection points.

� differential parameters: order 4 is the lowest for computing
continuous curvatures and tangents.

B-spline order k can be changed. But, the condition number of
the system increases very quickly when k is rising. This implies the
distortion of the control polygon (the line segments connecting con-
trol points Qi). As a result, k cannot increase too much for numer-
ical reasons.

3 CRITERIA FOR ESTIMATING DATA AP-
PROXIMATION

The main problem is now to measure the accuracy for data fitting.
The difficulty is to estimate curve f between given points pi. We
define two estimating criteria for checking whether approximating
curve f satisfies a tolerance criterion. More details on these new
estimating criteria can be found in [24].
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3.1 Definition of norms N1 and N2

It is possible to compare different B-spline curves using the norms

N1(f) = Max
�
MaxfjQjij; i = 0; :::;mg; j = 1; :::; d

	
(7)

N2(f) =

pPm

i=0
kQik2

m+ 1
(8)

We first consider original polygonal curve P as an interpolating
B-spline curve g of degree one, defined on arbitrary knot vector ~T
with parameter values �i [24]. With this hypothesis, g belongs to
linear space S2; ~T . Using norms N1 and N2 on f � g requires that
B-spline curves f 2 Sk;T and g 2 S2; ~T belong to the same lin-
ear space. The common degree is obtained through the degree ele-
vation process [20]. The knot vectors are unified using subdivision
algorithms (Boehm, Oslo, improved Oslo).

Let f[i] be the approximating spline segment of line segment
[pi; pi+1]. The extreme points of f[i] are f(�i), f(�i+1). When
N1(f � g) is equal to tolerance ", all f[i] curve segments are in-
cluded in a band. Width L of the half-band is less than (or equal to)p
2" (Figure 1 (a)).

For our fitting problem, if the value ofN1(f�g) is large, either
we have a bad correspondencebetween data pi and their approxima-
tions f(�i), or the control polygon is far from the initial line. Both
situations are inappropriate. The first situation can be detected by
computing Supi=0;:::;nkf(�i)� pik.

More generally, if g is not a piecewise linear curve
but an arbitrary B-spline curve, if N1(f � g) equals ",
f is included in a band centred around g (Figure 1 (b)).
More than being a band criterion for data approxima-
tion, we have a band criterion for B-spline approximation.
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Figure 1: (a) Band criterion for data fitting (b) and B-spline fitting.

(� being control points)

If required, additional information concerning the average be-
haviour of curve f can be deduced from norm N2.

3.2 Local estimation criteria

The goal of the second estimating tool is to obtain a local estimation
approach independent of parameter values �i.

We focus our attention on the definition of accurate measure-
ments which guarantee that approximating B-spline curve f satis-
fies tolerance ". If we call such a criterion d, a condition of valida-
tion is d(P;f) � ".

New criterion d that we introduce is linked to geometric proper-
ties of B-spline f , and more precisely to its control points. They
“roughly” represent the shape of the B-spline. The degree of accu-
racy between f and its control polygon depends on the number of
control points in the representation. Using subdivision algorithms,
the control polygon can be as closed as required of the correspond-
ing curve.

The convex hull property can be used to predict the B-spline po-
sition according to the position of the control points. The defini-
tion of B-splines ensures local modelling on each interval [ti; ti+1]
(ti < ti+1): the B-spline curve position dependson k control points
Qi�k+1; :::;Qi (Figure 2).

                                          Qi

  Qi k− +1

                                   
( ) ( )f t Q B tj j k T

j i k

i

=
= − +
∑ , ,

1

                          t i       t i +1

Figure 2: Local B-spline modelling: an example
for an interval [ti; ti+1].

Such a geometric formulation (Figure 2) does not yield suffi-
cient accuracy. The B-spline curve on interval [ti; ti+1] (or curve
segment [f(ti); f(ti+1)]) is included in the convex hull of control
points Qi�k+1; :::;Qi . But it is a wide inclusion: curve segment
[f(ti); f(ti+1)] is within the convex hull but is not strictly limited
by it.

Our goal is to obtain a measurement between original curve P
and its B-spline approximation f . An equivalent formulation is to
have a measurement between each line segment [pi; pi+1] and its
approximating curve segment [f(�i); f(�i+1)]. If the maximum of
these measurements is within tolerance ", we can claim that curve
f satisfies the approximating problem.

                            pi +1

           pi

                             ς i       ς i+1

( )f Qi jς + =1

( )f Qi j nbς = − +1

Figure 3: Convex hull of curve segment [f(�i); f(�i+1)].

Through this approach, we should obtain a control polygon
whose convex hull only contains curve segment [f(�i); f(�i+1)].
Such a polygon provides local estimation values for B-spline be-
haviour. This can be achieved by transforming each curve segment
into its Bézier representation by applying subdivision algorithms,
i.e. by inserting parameters (�i)

n
i=0 with (k � 1) multiplicity into

knot vector T . The representation is illustrated in figure 3. We
should note that it is not really a Bézier segment because there may
be a knot tj within [�i; �i+1]. The number of control points of this
curve segment is nb (nb � k).

This stage could be improved in order to obtain a more accu-
rate estimation. Parameter value �i is linked to approximating point
f(�i) of data pi. Generally, f(�i) does not correspond to the best
approximation of data pi [13]. We call (��i)ni=0 optimal parameter
values, whose value f(��i) is the closest approximation of data pi .
We can apply descent algorithms to move along curve f and reach
these optimal parameters or apply Hoschek’s technique. One should
make sure of the numerical convergence of the descent method by
ensuring that the new approximating point is closer to data pi than
the latter at each iteration. By replacing parameters �i with parame-
ters ��i in the last stage, we obtain a more accurate estimation of data
fitting on each line segment (Figure 4).
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  pi                                ( )f Qi jς + =1

                      ( )f Qi j nbς = − +1
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Figure 4: Convex hull of curve segment [f(��i); f(��i+1)].

In the last part, we apply the Hausdorff metric to polygonal curve
P i = (pi; pi+1) (i = 0; :::;n � 1) and corresponding �Qj =
( �Qj�nb+1; :::; �Qj). If the maximum of the Hausdorff distance be-
tween both polygonal curves P i and �Qj (i = 0; :::;n� 1) is equal
to ", then fitting B-spline curve f is at the most at distance " from
original polygonal curve P . Generally, this criterion is more accu-
rate than the previous one defined by N1 .

By studying the control points on each best curve segment, we
can also obtain local information on the average behaviour of f .

4 DATA COMPRESSION

Let P be the polygonal curve defined by the original given vertices.
The general problem of data compression is to define a curve f with
a minimal number of parameters so that d(P;f) � " (d being a cri-
terion for estimating data approximation). The number of param-
eters of f ought to be lower than the number of parameters in ini-
tial curve P . In practice, tolerance " is often chosen so that there is
no visual difference between P and f for the given representation
scale.

In subsection 4.1, we present a brief overview of current data
compression methods. Most of them are based on either the repre-
sentation by means of a list of points or the spline representation. We
introduce our data compressionmethod using fitting B-spline curves
in subsection 4.2.

4.1 Usual methods

4.1.1 Using representation by means of a list of points

The data compression problem using this representation is formu-
lated so that the perpendicular distance of each point on curve P to
the fitting line segment is within a pre-defined error tolerance. Many
algorithms have been proposed in this direction. The goal of this pa-
per is not to give a taxonomy of the different methods. Many authors
tried to compare these data compression algorithms [3, 5, 15, 19].
The main conclusion is that there is no reference algorithm. The re-
sults often depend on the line morphology [4]. Nevertheless we can
say that some methods aim at minimizing the number of line seg-
ments at the expense of time [2, 9, 14, 22, 27] to name a few, while
others aim at minimizing time with less emphasis on the number of
line segments [21, 23, 26, 28].

The drawbacksare linked to the broken line effects resulting from
this representation (Figure 5). In practice, a solution often used con-
sists of combining a simplification and a smoothing process (for ex-
ample, a Douglas and Peucker algorithm [9] is followed by a cubic
spline calculation). Cubic approximation seems to be very attractive
for modelling complex shapes [1].
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Figure 5: Jagged lines of the representation by means of a list of
points (right): an example for mountain road modelling (left).

The advantage of using fitting B-splines as we suggest in the
following subsection is to be able to treat both compression and
smoothing. In addition, B-spline curves are able to produce more
powerful processings through:

� parametric curves: possibility of combining the curve with the
trajectory of an object,

� continuous curves: possibility of computing continuous cur-
vatures and tangents,

� B-spline properties: possibility of having curve displacements
through the modification of control points.

4.1.2 Using spline representation

The famous methods based on splines concerning data compression
are knot removal strategies.

The purpose of these strategies is to reduce the number of knots
in a given spline without perturbing the spline more than given toler-
ance ". Such reduction means that we approximate the given spline
in a spaceS, by a spline in a subset of S. In other words the number
of degrees of freedom is reduced and we obtain data compression.

Some knot removal techniques have been already published.
Lafranche and Le Méhauté propose an approach using a Bézier ap-
proximation of a function in IR2 [16], while Lyche and Morken [18]
as well as Eck and Hadenfeld [10] consider the problem using a B-
spline representation.

Lyche and Morken’s strategy

Without going into details, we can summarize Lyche and
Morken’s knot removal strategy. The inputs are:

� an original curve P to compress,
� a tolerance ",
� an interpolating B-spline f of P defined on a knot vector T

(several choices could be made for T , as described in subsec-
tion 2.2).

The problem is to build an approximating B-spline g, defined on
a knot vector � , which is a subset of T . � is built with a minimal
number of knots so that the difference between g and f is less than
(or equal to) " (i.e. d(f; g) � " where d could be the criterion in-
troduced in subsection 3.1).

The strategy can be broken down into three main stages:

� First, we have to assign a weight !j to each inner knot tj . For
this we define an approximating B-spline gi defined on T in
which we remove inner knot ti, and compute the difference
with f . Weight !i = d(f; gi) quantifies the significance of ti
in the representation of f .

� The second stage selects the knots to be removed on the prin-
ciple that a knot can be removed if and only if its weight is
less than (or equal to) the tolerance. Here we must take into
account the vicinity constraint when close knots should be re-
moved together.

� The last stage is reconstructing part of approximating curve g.
It is a reconstructing step because the control points of approx-
imating curve g are defined using the control points of f .
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Eck and Hadenfeld’s strategy

Eck and Hadenfeld’s strategy [10] is a complementary method;
it is based on the same principle. The inputs are the same. There
is still an interpolating spline f and the goal is still to find a knot
vector with minimal length. It is also a knot removal strategy. The
three main stages are preserved:

� the weight computation part,

� the selection of knots to be removed,

� the reconstructing stage.

The difference is in the weight computation part. There are two
methods for computing the control points of approximating B-spline
curve gi. We call them a “forward” computation of the control
points which leads to B-spline curve giI , and a “backward” compu-
tation which leads to B-spline curve giII . These latters stem from
the choice of the starting control points in the computing process: if
we start computing the control points of gi from the lowest subscript
and increase it, we obtain the “forward” algorithm and conversely.
The computation of the new control points corresponds to a reverse
knot insertion process.

Generally, B-spline curves giI and giII are not the same. Obvi-
ously, the only exception occurs if a knot has been inserted artifi-
cially before or, in other words, if the continuity order at the respec-
tive knot is higher than it should be according to its multiplicity.
Thus, the necessity of interpreting the knot removal process as an
approximating process is manifest.

If we call AI
j (respectively AII

j ) the control points of B-spline
curve giI (respectively giII), Lyche and Morken determine gi being
the best approximation among these two B-spline curves. Eck and
Hadenfeld define a new B-spline curve gi whose each control point
Aj is within a line segment whose extremities are the control points
of the two methods (i.e. Aj 2 [AI

j ;A
II
j ]). A set of real numbers

�j is introduced for geometric reasons. Control points Aj (points
marked with � in figure 6) split the line segments from AI

j to AII
j in

the ratio �j : (1 � �j).

Q A AI II
0 0 0= =

Q A I
1 1=

A II
1

A I
2

A II
2 Q3

A I
3

A II
3

Q4

A I
4

Q A II
5 4=

Q A AI II
6 5 5= =

Q2

Figure 6: An example for the general construction
of knot removal (k=4, �j = 1=2).

4.2 Fitting B-spline technique

Fitting B-spline curves are suitable for data compression. Data usu-
ally come from a digitizing process. This leads to digitizing errors.
We assume that these are removed by a “cleaning” process. “Clean-
ing” involves the removal of spurious elements such as peaks, loops,
duplicates and other redundant data. Nevertheless, noise cannot be
totally removed, requiring application of fitting techniques.

The quality of the approximation depends on:

� order k,

� knot vector T ,

� parameter values (�i)ni=0 .

We explained possible choices in section 2. We are going to dis-
cuss the particular choices for data compression. Data pi is not to-
tally independentof its neighbourspi�1 and pi+1 . This is the reason
why we have to find specific parameters to adjust approximation.

We carried out a preliminary study on the influence of different
parameterizations and knot vectors on the quality of the approximat-
ing curve [24]. The relationships between knot vectors and parame-
terizations for a large set of data have been studied. We briefly sum-
marize the results.

Order k is an important parameter not for compression but for
approximation. An order 4 is commonly used because a degree 3
generates inflection points. Thus, it is able to obtain close represen-
tations of complex shapes with only one spline segment. This order
is also the lowest for having a continuous curvature along the curve
(see subsection 2.4).

We now have to define knot vector T . Equation 3 provides good
distribution between parameters (�i)

n
i=0 and knots (ti)

m+k
i=0 . This

formula is generally used when data distribution is not uniform, in
other words when we have an irregular density of points. A uni-
form knot vector is generally a poor solution in this case. We do
not have such a situation. Rather than using equation 3 we advise
the use of a uniform knot vector. With redundant information, non-
correspondence between approximating parameters and knots is re-
duced. Even if the approximation is slightly less close to data pi ,
a unified distribution generally gives good approximating results.
The main advantage for data compression is that a uniform vector
needs not be stored.

As regards parameter values, we suggest using Hoschek’s intrin-
sic parameterization [13] starting from a centripetal one (see sub-
section 2.3). The oscillating phenomenon of Hoschek’s parameteri-
zation which can occur between the given points when the distance
between them is large, is non-existent here due to the amount of in-
formation.

A natural approach of compression is to determine the minimum
number of control points so that the corresponding B-spline approx-
imation yields an error smaller than (or equal to) the given tolerance.
A reasonable assumption is that the error in the approximating pro-
cess increases as the number of control points decreases. If we start
by letting (n+1) be the number of control points of f (the interpo-
lating curve is assumed to be the curve of reference), the minimum
number of control points can then be determined using a bisection
method [25]. It may happen that a high number of points yields an
initial system of non-maximum rank. In such a case, the initial num-
ber of control points is chosen slightly smaller than (n+ 1).

5 RESULTS

The fitting strategy described in subsection 4.2 has been imple-
mented and extensively tested. In this section, we present some sig-
nificant tests and statistical summaries. The inputs of the algorithm
are a curveP with a corresponding list of coordinates and tolerance
". The output is a B-spline curve f with corresponding knot se-
quence T and control points (Qi)

m
i=0 so that d(f;P ) � ". d being

the new estimating criterion introduced in subsection 3.2.

The digitized curves P come from a cartography institute. They
have been chosen for the diversity of their number of points and the
diversity of their shapes.

In order to validate our method, the two following aspects are of
importance:

� first we have to achieve high compression rates,
� in addition, our data compression algorithm should produce

results with “reasonable” computation costs.
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5.1 Compression rates

We have compared our fitting strategy with polygonal Douglas and
Peucker’s and Arge and Dæhlen’s algorithms [9, 2]. The choice of
these algorithms can be explained by first the interest in cartogra-
phy (Douglas and Peucker) and the ability to obtain high compres-
sion rates (Arge and Dæhlen). Our strategy is also compared with
knot removal strategies. It is impossible to present here all the re-
sults we obtained by applying these algorithms at many scales or tol-
erances. It is more difficult when the amount of initial lines is large.
We present in this subsection significant samples of the results. We
refer the reader to our research report [25] for more details.

Tolerance" is first set so that there is no visualdifference between
the initial curve and its approximation at a fixed scale. "=0.02mm
(set by the institute) corresponds to the real case for the graphics we
study in this subsection (Figures 7, 8 and 9).

The compression rates are computed using the following formu-
las (the data are assumed to be within a plane):

� 100 � 100�(m+1)

(n+1)
for piecewise linear curves,

� 100� 100�(2m+3)

2(n+1)
for B-spline curves defined with a uniform

knot vector,
� 100� 100�(3m�k+6)

2(n+1)
for B-spline curves defined with a knot

vector from equation 3.

The second formula is obtained from the storage of order k (1
data), (m + 1) control points (2(m + 1) coordinates). The third
needs to take knots ti into account ((m+ k+1� 2(k� 1)) data if
we remove (k � 1) multiplicity of extreme knots t0 and tm+k).
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Figure 7: Initial isobathymetric line1 (257 points).

Figure 7 depicts a section of an isobathymetric line around
Brest’s roadstead (France). Statistical results corresponding to this
kind of lines are presented in table 1. Our fitting strategy is analysed
using different knot vectors and parameterizations.

Method Knots Strategy Compression

Polygonal
Arge D�hlen 68%

Douglas Peucker 56%

B-spline

De Boor

Lyche Morken 13%

Eck Hadenfeld 51%

Fitting (e=0.5) 22%

Uniform
Fit.(Hos. e=0.5) 61%

Fitting (e=0.5) 49%

Table 1: Compression statistical results corresponding to a set of
20 isobathymetric lines ("=0.02mm, k=4).

1line whose points correspond to the same value in depth

We can hope for higher compression rates by having higher tol-
erance (or lesser accuracy). On the contrary, higher accuracy yields
less compact representations.

As Buttenfield indicates [4], the features of the initial line deter-
mine performance. The compression rate depends mainly on the
tolerance and also on the intrinsic geometry of data. Using Butten-
field’s guidelines, we have tested the method at different scales with
complex and smooth lines.

Method Knots Strategy � ?

Polygonal
Arge D�hlen 61% 74%

Douglas Peucker 51% 65%

B-spline

De Boor

Lyche Morken 5% 24%

Eck Hadenfeld 38% 58%

Fitting (e=0.5) 11% 34%

Uniform
Fit.(Hos. e=0.5) 49% 68%

Fitting (e=0.5) 40% 59%

Table 2: Compression statistical results corresponding to a set of
20 complex coastlines (�) and 20 smooth lines (?)

("=0.02mm, k=4).

Many curvature changes in the complex coastlines we compress
(Figure 8) require more elements (control points) for modelling the
shapes than expected for polygonal methods (Table 2). This natu-
rally implies lower compression rates in comparison with table 1.

0 105 15

50

60

55

65

Figure 8: An example of coastline which has a complex geometry
(486 points).

On the contrary, smooth shapes lead to higher data compression
(Table 2). Figure 9 (mountain road) is a sample of the lines we
study. The others come from waterway and railway digitalization.
For modelling smooth curves, it may be better to use B-splines (Fig-
ure 11) rather than C0 lines (Figure 10).
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Figure 9: Initial mountain road (251 points).
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Figure 10: Approximating polygonal curve obtained
with an higher " ("=0.2mm).
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Figure 11: Approximating B-spline curve obtained
with an higher " ("=0.2mm).

We cannot conclude this subsection without emphasizing the
good compression rates of Arge and Dæhlen’s intersecting cones
method and the substantial improvement made by Eck and Haden-
feld as regards knot removal strategies.

5.2 Computation costs

It is difficult to give accurate algorithmic performance measure-
ments. As in the analysis of compression rates, the main reason is
that computation cost depends on the geometric complexity: differ-
ent values are obtained based on data distribution. We do not present
in this subsection statistical results such as in subsection5.1 because
computing time is more sensitive to the number of data points than
compression rate. Nevertheless, we present characteristic samples
of time required in table 3.

Method Knots Strategy � ?

Polygonal
Arge D�hlen 0.1" 2"

Douglas Peucker 0.4" 3"

B-spline

De Boor

Lyche Morken 47' 08" 1h 22'

Eck Hadenfeld 40' 31" 59' 21"

Fitting (e=0.5) 1' 27" 3' 27"

Uniform
Fit.(Hos. e=0.5) 9' 33" 13' 24"

Fitting (e=0.5) 1' 52" 4' 45"

Table 3: CPU time valuation of compression strategies: time
required to compress the isobathymetric line of figure 7 (�)
and the complex coastline of figure 8 (?) ("=0.02mm, k=4).

We should first notice that the computing times required by the
polygonal methods are the lowest. It seems natural to have such re-
sults. The iterative construction of these methods selects data within
a tolerance band. This implies only one construction of approximat-
ing polygonal curve. On the other hand we apply several local es-
timation criteria and linear system resolutions in the bisection pro-
cess (and also in Hoschek’s process) in order to search for best ap-
proximating B-spline curve f . In comparison with the knot removal
strategies, we obtain better results even in this subsection. We refer
to our study [25] for further information on the difference in CPU
time between the different strategies.

We should point out that computing time is not proportional to the
number of initial data. It is natural to increase computing time when
there is more data. Time required to compare initial line segments
[pi; pi+1] with approximating curve segments [f(��i); f(��i+1)] is
higher in the local estimation criterion. In addition, computing time
is greatly dependent on the size of the linear systems through:

� the number of lines (n) (i.e. the number of initial data),
� the number of columns (m) (i.e. the tolerance).

The CPU time valuation proposed in table 3 results from the ap-
plication of algorithms whose first interest is a maximum data com-
pression without time restriction. In order to decrease the comput-
ing time, one can consider the possibility of first reducing the num-
ber of data points before fitting. We advise against using this tech-
nique. As a matter of fact, important information will thus be re-
moved, which naturally arises in the fitting strategy. In our research
report [25] we introduce solutions for reducing computing time. We
may impose lower convergence conditions in the local estimation
criterion and in the intrinsic Hoschek parameterization which nec-
essarily lead to less compact representations.

Another advantage of using B-spline curves is that we can zoom
in on a section of a curve and still have a smooth representation of
it. As a matter of fact, one can compute additional points on the
B-spline curve with (1) to improve the visual quality and the accu-
racy of the line. Such a property could be useful in embarked car-
tographic information systems. It is not possible for the polygonal
representation to do the same: adding points in the line segments
increases neither the visual quality nor the accuracy of the resulting
displayed line.

6 CONCLUSION

In this paper, a general formulation for fitting with B-spline curves
is proposed. Approximating quality depends on the choices of knot
vector, approximating parameters and degree. We summarize the
different choices for them.

Estimating the accuracy of the resulting approximation is a com-
plex problem. Criteria such as the maximum difference or the av-
erage quadratic difference are not sufficient. The main problem of
these criteria, due to a lack of information, is their inability to esti-
mate the curve between the given points. They are not able to take
into consideration the deviations which may occur between data pi .
Without intermediate points, this estimation could be judged from
the criteria we set up.

One of the applications of such estimating criteria is data com-
pression. Decreasing the number of control points of B-spline
curves makes it possible to compact the data. We have a large num-
ber of data values. These means that a data is not totally indepen-
dent of its neighbours. That is why we have determined particular
parameter choices which yield both high compression rates and fair
approximations.

Tests show that the compression rates and computation costs rel-
ative to this fitting method are better than those associated with knot
removal strategies. We obtain equivalent (or even higher) compres-
sion results with regard to Douglas and Peucker’s polygonal algo-
rithm.

Results about computation costs are necessarily better using the
representation by means of a list of points. But, B-spline represen-
tation offers higher visual results for modelling smooth lines while
increasing tolerance " (or having lesser accuracy). B-spline repre-
sentation offers higher level processingsas well. This need is impor-
tant in cartographic line generalization. Generalization is the pro-
cess of abstraction used when the scale of a map is changed into a
smaller scale. Usual representation by means of a list of points is
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not sufficient for dealing with some curve operators (displacement
or exaggeration operators for example). Our goal is to include our
data compression method in this context and even go further and to
suggest B-spline modelling in a line generalization process.
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pal du Service Hydrographique et Océanographique de la Marine”
(Brest-France) for their cartographic data and for their help in this
study.
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