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Abstract

Generalization is the process of abstraction applied when the scale
of a map is changed. It involves modifications of data in such a way
that the data can be represented in a smaller space, while best pre-
serving geometric as well as descriptive characteristics. A map is
an abstracted model representing the geometric reality. The smaller
the scale, the more schematic the representation. Line cartographic
generalization deals with graphic representation of lines. Many al-
gorithms are available for an automated line cartographic general-
ization. Instructions for using these algorithms are often complex
and representations applied ill-adapted to some generalization pro-
cesses. In this paper, we explain the advantages of using B-spline
curves in a line generalization process. We focus on processing of
line cartographic generalization operators in a maritime context.
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1 INTRODUCTION

We need to distinguish between the generalization issues that are
brought about by graphic representation from those which arise
from modelling at different levels of spatial and semantic resolu-
tion. Second generalization can be viewed as a series of trans-
formations (in some graphic representation of spatial information),
intended to improve data legibility and understanding, and per-
formed with respect to the interpretation which defines the end-
product. These two categories have motivated research mainly
in two areas: model-oriented generalization, with focus on the
first stage above-mentioned, and cartographic generalization, which
deals with graphic representation. Our paper is relevant to carto-
graphic generalization.

Cartographic generalization includes the whole processings en-
countered when the scale of the map is changed into a smaller
scale. We should produce a legible map which is as close as pos-
sible from reality. The tools currently available for automated car-
tographic generalization resemble those of the manual generaliza-
tion. A catalogue of cartographic generalization operators has been
proposed [23], including selection/elimination, aggregation, struc-
turing, compression (or filtering), smoothing, exaggeration, carica-
turing, enlargement and displacement. One can essentially distin-
guish between two approaches for the implementation of the work-
ing tools in generalization. One is automatic while the other is in-
teractive. The generalization automation has been studied for over
twenty years. The difficulties of providing an automatic solution
points out the complexity of the problem.

The second section of the paper deals with the representations
used for data modelling. Subsection 2.1 is devoted to the represen-
tation by means of a list of points. Most generalization algorithms
have been developed focusing on the manipulation of vectors. Rep-
resentation by means of a list of points does not provide fair mod-

elling of curves which may have complex and varying shapes. In
addition, this representation is often ill-adapted to some generaliza-
tion process. In subsection2.2, we suggest a different representation
based on B-spline curves.

The third section of the paper deals with the application of B-
spline representation in processing of line cartographic generaliza-
tion operators in a maritime context. In subsection 3.1, we focus
our attention on data compression using a bisection method on the
number of control points. Line smoothing and displacement opera-
tors are developed in subsection 3.2. The strategy is based on a me-
chanical approach. The curve displacement is obtained through the
displacement of control points. Internal and external forces are ap-
plied at control points in order to produce the desired deformation.
Lastly, we introduce a technique for curve aggregation (subsection
3.3).

2 GEOMETRIC DATA MODELLING

2.1 Representation by means of a list of points

Polygonal curves are often encountered for data modelling. They
are appropriate to data compression as well as to simplicity and ef-
ficiency (CPU time) of their algorithms [25].

Data compression algorithms based on polygonal curves cor-
respond to the first generalization algorithms. Cartographer were
quickly aware that cartographic results were not sufficient using
these algorithms. Research in automatic generalization turned to
other algorithms permitting displacements. The goals were essen-
tially smoothing and caricaturing.

Three trends can be emphasized for smoothing. We can cite
smoothing methods based on averaging, convolution or neighbour-
ing points. Averaging techniques [3, 19] smooth small details while
preserving the general shape. Algorithms considering convolution,
gaussian smoothing for example [2, 18], are more regular. They are
used for smoothing details which have the same size. At the op-
posite, smoothing algorithms based on neighbouring points [6, 27]
have little influence on lines which are defined with a high density
of points.

Dutton’s algorithm [8] corresponds to the Brophy inverse
smoothing algorithm [3]. Increasing the angularity is not a com-
mon practice in generalization. Lowe’s algorithm [18] is more
interesting. Tests display its interest for smoothing by limiting
deviations and for caricaturing [22]. Nevertheless, the choice of
the parameters is difficult.

Generalization algorithms are usually based on a representation
by means of a list of points. The result quality depends on the line
morphology [4]. In practice, one of the solutions often encountered
consists of combining a simplification and a smoothing process: for
example, Douglas and Peucker’s algorithm [7] is followed by a cu-
bic spline computation. At the present time, one should have an em-
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piric approach for determining a solution (choice of an algorithm
and its parameter values). It is natural to notice the high cost of such
a technique.

More generally, this representation is not sufficient:

� for the acceptance of some resulting displayed curves,

� as a general representation method.

As regards the acceptance of some resulting displayed curves,
the drawbacks of the representation by means of a list of points are
linked to the broken line effects of the approximating line (Figure 2).
The smaller the scale, the more angular the approximating line. This
kind of representation is ill-adapted for modelling smooth shapes
such as roads (Figure 1), waterways or railways. One of the solu-
tions consists of applying continuous functions (algebraic functions,
wavelets, splines).
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Figure 1: Initial polygonal mountain road.
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Figure 2: Jagged lines of the representation
by means of a list of points.

As regards the representation method, it is limited to linear pro-
cessing. For example, in order to locally modify a curvature, we
should first identify the points which compose the curvature and
modify them one by one afterwards. The information linked to a
point is a strictly local information (each point represents a place
where the line goes through), and includes no neighbourhood in-
formation [12]. Moving a point implies a discontinuous displace-
ment along the curve. It would be useful to have a continuous dis-
placement that is to say that shifting a point implies an automatic
displacement of the neighbours. This need is important in order to
satisfy the caricaturing and displacement operators (see subsection
3.2).

One should improve the generalization automation by develop-
ing other representations which lead to higher level processings.
The need to introduce new representations in line cartographic gen-
eralization is detailed in Fritsch’s thesis [12].

2.2 B-spline representation

B-spline curves seem suitable for the needs introduced in subsection
2.1. We assume that the reader is familiar with B-spline curves. If
he is not, he can refer to [5, 9].

Our attempt is to include the fitting method in the line generaliza-
tion process. Our goal is not to find a completely generic modelling
but to find the best modelling for a type of lines. As B-spline curves
are smooth curves, they are well-adapted for modelling smooth lines
such as roads (Figure 1), railways or waterways (see also [1]). On
the other hand, geographic features such as seaports should not be
modelled with B-splines. The jagged line of a pier for example
should remain in the generalized map (Figure 3). Polygonal algo-
rithms ought to be applied in this case.
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Figure 3: A type of lines adapted to polygonal algorithms.

We can essentially distinguish two approaches for the implemen-
tation of the working tools in automated generalization. One is an
automatic process while the other is interactive [21]. The difficul-
ties of providing an automatic solution have led some researchers to
specialize in interactive techniques. In this case, low-level tasks are
performed by the software, while high-level tasks are performed or
controlled by cartographers. Through the interactive approach, B-
spline representation makes it possible for a cartographer to mod-
ify a B-spline curve since additional points can easily be computed.
Using local support of B-splines, a cartographermay introduce local
displacements or shape modifications by first introducing additional
points into the curve and by modifying them through control points
(see subsection 3.2). This could be a more powerful tool (for solving
line self-intersection problem for example) than the usual strategies
based on a simple shifting of data points.

In addition, B-spline parameters are invariant with respect to
affine transformations. As a result, B-splines are well-adapted to
multiresolution problems [11, 15]. Fritsch explains in his thesis the
advantage of wavelets in this context. He explains their drawbacks
for solving generalization operators as well [12]. We can cite their
lack of accuracy for spatial approximation.

Through the multiresolution approach, one can zoom in on a sec-
tion of a curve (Figure 4) and still have a smooth representation of
it using B-spline curves. As a matter of fact, one can compute ad-
ditional points on the B-spline curve to improve the visual quality
and the accuracy of the line (Figure 5). Such a property could be
useful in embarked cartographic information systems. It is not pos-
sible for the polygonal representation to do the same: adding points
in the line segments increases neither the visual quality nor the ac-
curacy of the resulting displayed line (Figure 6).
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Figure 4: Initial polygonal line (1355 points).
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Figure 5: Interest of B-spline curves for curve section analysis.
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Figure 6: Drawback of piecewise linear curves for
curve section analysis.

In the next section we explain how B-spline curves can be in-
cluded in the cartographic generalization process by studying the
generalization operators corresponding to the maritime context.

3 MARITIME LINE CARTOGRAPHIC GEN-
ERALIZATION

The main generalization operators in this context are:

� compression,
� smoothing,
� displacement,
� aggregation.

The lines we study are isobathymetric lines1 or coastlines. The
main constraint we should take into account in the modelling pro-
cess is safety. Priority is to ensure safety. That is to say for coast-
lines, it is less dangerous for sailors if the land is shifted inside the
sea than the opposite. We study the four operators in the following
subsections.

1line whose points correspond to the same value in depth

3.1 Data compression

Let P be the polygonal curve defined by the “original” given points
pi. The general problem of data compression (or reduction) is
to define a curve f with a minimal number of parameters so that
d(P;f) � " (d being a criterion for estimating data approximation
[24]). In practice, tolerance " is chosen so that there is no visual dif-
ference between P and f for the given representation scale.

The advantage of using B-spline curves for data compression is
to be able to deal with both compression and smoothing. In [25] we
compare our method to some polygonal methods and spline meth-
ods (knot removal methods). Good results are obtained with respect
to compression rate and computation cost.

Fitting B-splines are suitable for geographic data reduction. Data
usually come from a digitizing process. This leads to digitizing er-
rors. We assume that these are removed by a “cleaning” process.
This involves the removalof spurious elements such as peaks, loops,
duplicates and other redundant data. Nevertheless, noise cannot be
totally removed, requiring application of fitting techniques.

We have to determine the minimum number of control points
so that the corresponding B-spline approximation yields an error
smaller than (or equal to) tolerance ". A reasonable assumption is
that the error in the approximating process increases as the number
of control points decreases. An approximating B-spline curve is de-
fined by solving a linear system of equations (least squares fitting
technique). If we start by letting n (n being the number of the given
points) the number of control points of B-spline curve f (the inter-
polating curve is assumed to be the curve of reference), the num-
ber of control points can then be determined applying a bisection
method [25]. It may happen that a high number of points yields an
initial system of non-maximum rank. In such a case, the initial num-
ber of control points is chosen slightly smaller than n.

In [25] we explain the particular choices of knot vector T , pa-
rameter values �i, order k leading to fair approximation. We briefly
summarize the results. Fair approximation leading to high data
compression rates are obtained with:

� a uniform knot vector T ,
� Hoschek’s intrinsic parameterization [13],
� an order 4 (cubic B-spline curves).

In cartography, processing time should be the lowest. That is
why we advise rather using a centripetal parameterization [16] than
Hoschek’s intrinsic parameterization. It yields a good compromise
between reduction and processing time.

We have compared our strategy with polygonal compression
methods such as Douglas and Peucker’s algorithm [7]. The choice
of this algorithm can be explained by first its interest in cartogra-
phy and its ability to obtain high compression rates. The success
of Douglas and Peucker’s filtering algorithm in cartography may be
explained by the fact that the points it selects approximate the line
vertices quite well. It tends to select critical points close to those se-
lected by humans. However, the problem is that this algorithm can
create self-intersecting lines while increasing " because no mecha-
nism is included for discarding topologic inconsistencies. Further-
more, overlaps might result between different lines as a result of
filtering each line individually (Figure 8). Results show that our
method is well-adapted to smooth lines [25] by:

� improving the visual quality of the resulting displayed im-
age by reducing without solving the self-intersecting problem
(Figure 9),

� having equivalent or higher compression rates [25] (Figure 9).

In both cases, considering the algorithm with smaller tolerances may
reduce the topologic errors [20, 28].
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Figure 7: Initial polygonal line (981 points).
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Figure 8: Approximating polygonal curve.
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Figure 9: Approximating B-spline curve
(with the same " as in fig. 8).

Our data compression method could be considered as an elemen-
tary cartographic generalization system: results obtained by having
lesser accuracy (or higher tolerance ") lead to data compression and
line smoothing (Figures 10, 11 and 12). We should now introduce
additional generalization operators (displacement, exaggeration, ...)
in order to improve the method. The results differ according to the
applying order of the different operators [14].
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Figure 10: Initial polygonal line (1054 points).
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Figure 11: Generalized line obtained using our data compression
algorithm while increasing " (" = 0:2mm).
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Figure 12: Generalized line obtained using our data compression
algorithm while increasing " (" = 0:4mm).

3.2 Line smoothing and displacement

The goal of this section is to deal with smoothing and displacement
cartographic operators. The smoothing process should preserve the
vertices of the initial line. Both of them should ensure safety that is
to say that each curve ought to be shifted towards deeper areas. Let
us propose a rough draft of what is expected (Figure 13).

Generalized line (smoothing and displacement)

Initial line

Direction of
higher depth

Figure 13: Manual curve smoothing and displacement.

Intuitively, one should:

� produce an approximating curve f which is as close as pos-
sible from “original” vertices (which are on the right side or
safety side),

� apply forces at specific locations to shift curve f towards
safety.

The first stage could be achieved applying weighted fitting tech-
niques. These techniques are useful to locate a curve near specific
points. The curve is closer to points which have higher weights.
One should first select the vertices of the initial line which are well-
located and impose higher weights at these vertices in the approxi-
mating problem afterwards.
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We can consider Douglas and Peucker’s filtering algorithm to se-
lect the vertices of the initial line. Let us remind the reader that
this algorithm tends to select critical points close to those selected
by a cartographer. Figure 14 is an example of vertices selected by
this algorithm. Studying the angles between two consecutive line
segments, we assume that a vertex is ill-located (respectively well-
located) if the angle with regard to the safety constraint is smaller
than (or equal to) � (respectively higher than �) (Figure 14).

Direction of
higher depth

Initial line

Simplified line using Douglas and Peucker's algorithm

Vertices which are well located (on the safety side)

angle ≤ π
angle > π

Figure 14: Selection of well-located vertices of the initial line.

The next stage is to shift approximating curve f towards safety.
Usually, the modification of a model is a long and tedious process
carried out through basic algorithms. These algorithms consider the
well-known geometric properties between the B-spline curve and its
control polygon (the line segments connecting control points). The
core of the curve deformation process is the displacement of its con-
trol points. Hence, the orientation, the amplitude and the direction
of each control point displacement as well as the number of control
points to be moved are the unknowns of the problem. Commonly,
all these parameters must be set by the user.

The method introduced by J. C. Léon and P. Trompette [17] re-
duces the number of parameters (controlled by the user) during the
deformation process. They suggest using the analogy of the stan-
dard representation of a control polygon with a tensile cable net-
work. The curve deformation is obtained through mechanical pa-
rameter modifications which lead to a shape modification. Each
equilibrium position of the cable network (or the control polygon)
can be determined solving a linear system of equations. The strat-
egy relies on a mechanical approach permitting fast calculations as
well as local and global deformations.

The mechanical model suggested by J. C. Léon and P. Trompette
describes the behaviour of a network with tensile cables (or bars).
They suppose there is no friction between them. Starting with an
initial curve geometry, its control polygon exists and therefore an
initial network is always available. The equilibrium position of the
bar network depends on:

� external forces applied at control points,
� internal forces involving traction in each network’s bar.

Control points are:

� either fixed control points (i.e. their coordinates are fixed):
control points which are well-located in our application,

� or free control points: control points to be moved towards
safety.

The determination of free or fixed control points is based on the
principle of figure 14.

At that point, the geometric and mechanical problems are cou-
pled. Curve displacement is obtained through mechanical parame-
ter modification. The designer (or the cartographer in our context)
can use two different approaches. He can:

� modify the external load field applied to the network by the
addition of new forces applied to free control points (choice of
these control points and choice of the direction and intensity of
these new external forces),

� modify the internal force density through variations set by the
designer and applied to the corresponding selected branches.

The approach proposed by J. C. Léon and P. Trompette is fully in-
teractive and corresponds to the use of workstations having high per-
formance graphic tools. The designer should select the area where
the modification should be applied as well as the deformation mode
(i.e. one among a set of pre-defined categories or libraries). This
entirely determines a set of control points to be moved and their sta-
tus (free or fixed). Different deformation functions are proposed in
order to produce a curve stretching, shrinking, tweaking, .... The
reader can refer to [17] for more details on the different behaviours
of the curve and corresponding parameter values.

Such a library of functions naturally corresponds to an interactive
approach of the generalization problem. Our approach of the gener-
alization process is a semiautomatic and even automatic approach.
Nevertheless, the semiautomatic technique seems to be more real-
istic. A minimum number of parameters for determining an initial
B-spline curve (choice of parameterization �i, knot vector T , order
k, weights !i, or choice of the tolerance in the Douglas and Peucker
algorithm) must be set by the user.

The (external and internal) force choice is a difficult task. One
can easily compute forces in order to produce separately a curve
stretching or a curve shrinking such as J. C. Léon and L. Trompette
propose. On the other hand, it is more difficult to introduce accurate
forces satisfying several deformations at the same time. This is the
main difficulty in automated line generalization. We try to have a
formula which yields an automatic internal and external force deter-
mination. The formula should take into account the geometric prop-
erties of the curve (length of the network’s bars, curvature, ...). The
formula we introduce (1) yields satisfactory results in most cases.
It may happen that a line which has a complex geometry can create
spatial conflicts. E. Fritsh suggests a technique for reducing some
spatial conflicts [12]. The strategy is based on the translation of
cartographic constraints into mechanical constraints. Another solu-
tion consists of applying an interactive approach (Léon-Trompette’s
technique, control point displacements, ...).

This leads us to explain the choice of internal and external forces
for cartographic line displacement. To ensure tension in every ca-
ble, internal force densities are restricted to strictly positive values.
A simple, though efficient, solution consists of setting a uniform in-
ternal force density throughout the network. Such a choice is jus-
tified if the user wants to obtain a curve deformation similar in ev-
ery direction like a membrane made from an homogeneous mate-
rial would behave. The results point out that we should not consider
high internal force densities. Using high densities leads to reduce or
even prevent the shrinking and stretching effects and to favour the
fact that external forces interfere with each other. It is then more
difficult to shift the curve into a pre-defined direction because of
the interaction of neighbouring external forces. We suggest using
slight force densities. Such a choice can reproduce the behaviour of
a thin elastic curve (without return forces) being able to dealwith the
stretching and shrinking phenomena. However, if the user wants to
differentiate the curve deformation along specific directions, he can
set different force densities in the network’s bars.

The location of the external forces are placed at free control
points. The forces are applied according to the internal normal
(i.e. the internal bisecting line). Their intensity depends on the
geometry of the network’s bars. Let i be the internal angle be-
tween (Qi�1;Qi) and (Qi;Qi+1) line segments (Figure 15), exter-
nal force density ~fexti applied to free control pointQi is determined
to be:
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� inversely proportional to internal angle i,
� proportional to lengths di�1 and di of line segments

(Qi�1;Qi) and (Qi;Qi+1).

Ni
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di-1

di
γi

Figure 15: Bar network geometry.

The smoothing and displacement strategy described in this sub-
section has been implemented and extensively tested. We have
tested the method with different geometric parameter choices. We
can say that a formula giving satisfactory results in many cases is:

~fexti = c:
Min(di�1; di)

i
~Ni (1)

where:

� ~Ni is the unit vector corresponding to the internal normal at
control point Qi (Figure 15),

� Min(di�1; di) ensures that the bar which has a smaller length
has a higher influence on the external force,

� c is a normalization factor,

We have analysed the results integrating them into the initial data
basis. The goal is to analyse the results according to the scale of the
initial data. We can say that the features of the line as well as the
safety constraint are preserved. Figures 16 and 17 display the pos-
sibility of having different degrees of smoothing. We should also
notice the ability of the method to smooth lines which have a com-
plex geometry (presence of estuaries, creeks, ...) (Figure 17).
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Figure 16: Curve smoothing and displacement (dotted line).
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Figure 17: Curve smoothing and displacement (dotted line).

As we have to first smooth the data, we should notice that our
method also realize data compression. For this smoothing, we con-
sider Foley and Nielson’s parameterization [10]. Such a choice can
be explained by the ability of the method to approximate the data
“in the corners” (Figure 17). This is due to the fact that the param-
eterization takes geometric properties of the initial line (length be-
tween the data, angles between two line segments, ...) into account.
The compression rates depend on the number of control points in
the B-spline curve. The number of control points is a parameter of
the displacement operator. The lesser the number of control points
the more schematic (smooth) and the higher compact the representa-
tion. This sort of compressiondiffers from the compressionproblem
described in subsection 3.1. In subsection 3.1, the problem of data
reduction is to define an approximating curve with a minimal num-
ber of parameters so that there is no visual difference between the
approximating and initial curves for the given representation scale.

3.3 Curve aggregation

The goal of this subsection is to propose a method for the curve ag-
gregation process. This process consists of aggregating two curves
together, at least one of them being closed. The constraints for the
aggregation process are (Figure 18):

� the depth:

– curves which have the same value in depth will be only
aggregated,

– the process should aggregate curves which are located
in deeper areas.

� the closeness:

– curves whose distanced (on the generalized map) is less
than " and which satisfy the previous constraints will be
aggregated.

Isobathymetric line 10m

Isobathymetric line 5m

A ggregation  poss ib le ,
defo rm atio n  to w ards

h igh er depth

Aggregation not possible,
else deformation towards

smaller depth

10 m

10 m

d<ε

Direction of
higher depth

Figure 18: Constraints for the curve aggregation process.

In cartographic generalization (not only restricted to the maritime
context), the merging operator is often considered. The merging
process consists of merging polygons according to their spatial and
semantic contexts.

Strategies which are able to merge polygons are [14]:

� the package merging method,
� the buffer method,
� the Schylberg’s method [26].

The packagemerging method consists of determining the convex
hull of initial polygons. Two main methods can be encountered to
pack two convex polygons: the first one is based on a triangulation
of the polygons, the other is based on a supporting line segments
search. This method does not preserve the initial shape of polygons
since the resulting convex hull is the convex hull of both polygons.
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The dilating and eroding operators are the main operators of the
buffer and Schylberg’s methods. Dilating yields a stretching of the
initial polygon whereas eroding yields a shrinking of the dilating
polygon. Schylberg’s method uses a removing operator in addition.
This implies the removal of outline misrepresentations due to the ap-
plication of dilating and eroding processes. The resulting polygon
has less deformation than applying the buffer method. On the other
hand, both methods can create “holes” inside the resulting polygon.
Thus, the topology of the map is not preserved. This constitutes their
main drawback.

These methods require the initial lines to be polygons. We may
have open curves in our study. In addition, previous methods do not
always preserve safety. That is why we have introduced a new op-
erator. Our method is based on three stages:

� search for line segments which lean on the curve to aggregate,
� reorganization of initial points,
� approximation on this new data reorganization.

We suppose in the following paragraph that the aggregation con-
straints are satisfied (i.e. curves have the same depth, the process
aggregates curves which are located in deeper areas, distance d be-
tween the polygonal curves is less than ").

The first stage is based on an angle minimization problem (the
orientation of the angles is taken according to the orientation of the
aggregation). Starting from both extremities of the open curve, we
should select point pi on polygonal curve P and point qi on poly-
gonQ to aggregate so that [pi; qi] be the first line segment obtained
turning a half-line (external to Q) around point pi . The two first
line segments [pi; qi] satisfying this condition and whose lengths are
lesser than tolerance " are the supporting line segments of the ag-
gregation process (Figure 19). A new aggregating polygonal curve
is obtained through a reorganization of the initial data of P and Q.
The last stage is the determination of approximating B-spline curve
f . Smoothing and displacement operators introduced in subsection
3.2 may be applied in order to shift B-spline curve f towards higher
depth (Figures 20 and 21).
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Figure 19: Supporting line segments for curve aggregation.
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Figure 20: Curve aggregation process.
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Figure 21: Curve aggregation process.

Figures 22 and 23 compare the results we obtain (dark grey
curves) with results obtained from a manual aggregation (light grey
curves). One can notice the similarity of the curves. Numbers in fig-
ures 22 and 23 correspond to values in depth. It should be noticed
that manual curves do not always preserve safety (Figure 23).

Figure 22: Comparison with a manual curve aggregation process.

Figure 23: Comparison with a manual curve aggregation process.

4 CONCLUSION

Many researches have been focused on the creation of geographic
data bases. The near future will be focused on their updating. In
such a case, the generalization process is essential for producing by-
products or for including data from other bases. Although many al-
gorithms exist, there is no system which is able to produce an auto-
matic generalization solution. This is due to the fact that the gener-
alization method depends on the features of the initial line.

The automatic processes dealing with line cartographic general-
ization are difficult. There are also necessary: linear objects consti-
tute the majority of the geographic information. This paper points
out the need to introduce new representations. We suggest using B-
spline curves. B-splines are introduced as an additional representa-
tion of the usual representation by means of a list of points. B-spline
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curves are suitable for modelling smooth objects. In this paper, we
have shown that we can satisfy the main line cartographic general-
ization operators (compression, smoothing, displacement, aggrega-
tion). We tested them in a maritime context.

Our next goal is to introduce curvature constraints in the line gen-
eralization process. The problem is to obtain a B-spline curve with
minimal curvature (to be defined). A solution would be to intro-
duce a curvature fitting technique. We should also continue our re-
search dealing with the other line cartographic generalization oper-
ators (caricaturing, exaggeration, ...).
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