Анализ взаимодействия пары направленных по потоку сверхзвуковых вихрей методами визуализации

В.Е. Борисов¹, А.А. Давыдов¹, Т.В. Константиновская¹, А.Е. Луцкий¹

¹ Институт Прикладной Математики им.М.В. Келдыша РАН, Миусская пл., д. 4, Москва, 125047, Россия

Аннотация

В работе выполнены анализ и сравнение взаимодействия пары направленных по потоку сверхзвуковых концевых вихрей при числе Маха набегающего потока $M_{\infty} = 3$ с использованием методов визуализации: максимальной завихренности и λ_2 -критерия. Пара сверхзвуковых вихрей генерировалась двумя соосными прямыми крыльями с острыми передней, боковой и задней кромками. Рассмотрены две конфигурации: пара вихрей противоположного вращения и пара вихрей со-направленного вращения. В первом случае угол атаки крыльев был 10°, во втором – угол атаки одного крыла был 10°, второго -10°. Численные данные были получены в области 10 хорд крыльев вниз по потоку от оси крыльев с использованием численной модели на основе URANS уравнений с моделью турбулентности SA. Численные расчеты были проведены на гибридной суперкомпьютерной системе K-60 в Институте Прикладной Математики им. М.В. Келдыша РАН с использованием разработанного пакета программ ARES для моделирования 3D турбулентных течений на высокопроизводительных компьютерных системах. Основные расчеты были проведены с использованием 224 процессоров. Расчеты проводились на неструктурированных сетках с гексагональными ячейками.

Ключевые слова

Идентификация вихря, сверхзвуковой концевой вихрь, пара вращающихся вихрей

Interaction analysis of two streamwise supersonic vortices by visualization methods

V.E. Borisov¹, A.A. Davydov¹, T.V. Konstantinovskaya¹, A.E. Lutsky¹

¹ Keldysh Institute of Applied Mathematics RAS, Miusskaya sq., 4, Moscow, 125047, Russia

Abstract

In this paper we present an analysis and comparison of two streamwise supersonic vortices interaction with using the methods of maximum vorticity and the λ_2 -criterion. Mach number of incoming flow was $M_{\infty} = 3$. A pair of vortices was generated by two coaxial straight wings with sharp leading, tip and trailing edges. Two configurations are considered: a pair of counter-rotating vortices and a pair of co-rotating vortices. In the case of counter-rotating vortices the wings attack angle was 10 degrees. In the case of co-rotating vortices the attack angle of one of the wings was 10 degrees, the attack angle of other one was -10 degrees. Numerical data were obtained in the domain of 10 wing chords downstream from a wings axis by a computational model based on the URANS equations with SA turbulence model. Numerical simulations were performed on the hybrid supercomputing system K-60 at the Keldysh Institute of Applied Mathematics RAS using the developed software package ARES for 3D turbulent flows modeling on high performance computing systems. The main

ГрафиКон 2021: 31-я Международная конференция по компьютерной графике и машинному зрению, 27-30 сентября 2021 г., Нижний Новгород, Россия

EMAIL: narelen@gmail.com (В.Е. Борисов); ryzhiy@list.ru (А.А. Давыдов); konstantinovskaya.t.v@gmail.com (Т.В. Константиновская); allutsky@yandex.ru (А.Е. Луцкий)

ORCID: 0000-0003-4448-7474 (В.Е. Борисов); 0000-0001-5662-817Х (А.А. Давыдов); 0000-0002-1127-503Х (Т.В. Константиновская); 0000-0002-4442-0571 (А.Е. Луцкий)

simulation was performed on 224 cores. The simulations were carried out on unstructured grids with hexagonal cells.

Keywords

Vortex identification, supersonic tip vortex, vortex pair

1. Введение

В современном мире с широко и активно развивающимися технологиями сохраняется высокий интерес к развитию сверхзвуковых летательных аппаратов как в военной промышленности, так и в гражданской авиации. В частности, важной задачей аэродинамики является изучение пары концевых вихрей, т.к. различные вихревые структуры образуются при полете любого летательного аппарата (ЛА) на кромках различных элементов ЛА, в том числе, крыльев. Дозвуковые концевые вихри изучены достаточно хорошо, в то время как сверхзвуковые вихри нуждаются в дальнейшем изучении при различных режимах.

Для постобработки, анализа и сравнения полученных данных используются, в частности, специальные методы визуализации вихревых течений. Соответствующие обширные обзоры были сделаны, в частности, в [1-4].

В работе представлены результаты сравнения распространения пары противоположно вращающихся сверхзвуковых концевых вихрей в двух конфигурациях: противоположного вращения и со-направленного вращения. В процессе анализа и сравнения использовались метод максимальной завихренности и λ_2 -критерий визуализации вихревых структур.

2. Конфигурации к сравнению

Методы визуализации применены для проведения сравнительного анализа данных, полученных при моделировании пары противоположно и со- вращающихся сверхзвуковых вихрей при числе Маха набегающего потока M = 3. Углы атаки крыльев-генераторов к набегающему потоку для случая противоположного вращения были 10°, а для случая со-вращения угол атаки одного крыла был 10°, а другого -10°.

Рисунок 1: Общая схема модели: случай противоположного вращения

Численно исследовались и сравнивались течения за двумя соосными крыльями с острыми передней, задней и боковой кромками и ромбовидным основанием (рис.1). Крылья крепились основанием к стенкам, параллельным направлению потока. Конфигурация модели для случая пары противоположного вращения полностью совпадает с изложенной в [5]. Конфигурация модели для случая пары со-вращения отличается поворотом одного из крыльев-генераторов до позиции -10° к набегающему потоку (было повернуто крыло 1, рис.1).

Численные расчеты проводились в безразмерных величинах [4], за единицу длины бралось L = 1 м. Размеры расчетной области были следующими: $L_x = 0.35$, $L_y = 0.225$ and $L_z = 0.2$. Геометрия используемых крыльев была одинакова для обеих рассмотренных конфигураций: хорда каждого крыла была равна b = 0.03, полуразмах первого крыла $l_1 = 0.075$, второго - $l_2 = 0.095$. Толщина ромбовидного основания обоих крыльев равнялась h = 0.004. Расстояние между концевыми хордами крыльев составляло $l_3 = 0.03$. Таким образом, ширина области между стенками была H = 0.2. Ось x бралась со-направленной набегающему потоку. Ось z совпадала с общей осью крыльев. Ось y была направлена с подветренной стороны крыльев в наветренную сторону. Рассматривалась область длинной 10 хорд крыла вниз по потоку от общей оси крыльев. Число Рейнольдса в расчетах задавалось равным Re_L = 1×10⁷.

3. Численный расчет

Численное моделирование проводилось с помощью разработанного авторами программного комплекса ARES [6] для расчета трехмерных турбулентных течений вязкого сжимаемого газа на высокопроизводительных вычислительных системах в ИПМ им. М.В. Келдыша РАН на суперкомпьютере К-60 [7]. Численный метод основан на решении нестационарных осредненных по Рейнольдсу уравнений Навье-Стокса (URANS) с моделью турбулентности Спаларта-Аллмараса [8, 9]. Для дискретизации уравнений по пространству использовался метод конечных объемов с реконструкциями 2-го (TVD) и 3-го (WENO) порядков. Временная аппроксимация была выполнена на основе явной схемы. Для расчетов использовалась неструктурированная гексагональная сетка, состоящей из 25 774 200 ячеек для случая пары противоположно вращающихся вихрей и 35 763 750 для со-вращающейся пары. Было проведено сгущение сетки в зоне формирования и распространения вихрей для лучшего разрешения. Разница в количестве ячеек связана с перестроением сетки и с тем, что в первом случае сгущение проведено с одной стороны от крыльев, а во втором – с двух сторон. Расчеты проводились на 224 процессорах.

4. Визуализация вихрей

Для определения вихревых структур на гексагональных сетках внутри программного комплекса ARES был разработан отдельный постпроцессинговый модуль расчета данных. В нем реализован метод максимальной завихренности для поиска оси вихря в заданной подобласти расчётной сетки в предположении его единственности внутри подобласти (для однозначности идентификации оси в случае наличия в области нескольких вихрей). Для применения λ_2 -метода вычислены необходимые матрицы. Выходные данные вихревых структур формируются модулем в формате пакета программ Tecplot, с помощью которой в дальнейшем осуществляется визуализация результатов расчетов.

4.1. λ₂-метод визуализации

 λ_2 -метод (или критерий) для идентификации вихревых структур является достаточно широко распространенным и часто применяется при обработке данных. Он был предложен в работе [10]. Согласно данному критерию область вихревого течения определяется исходя из анализа собственных чисел симметричной матрицы $S^2 + \Omega^2$, которые всегда вещественны (здесь S и Ω соответственно тензоры деформации и завихренности течения). Вихревой областью при этом считается часть пространства, в которой второе собственное число $\lambda_2 < 0$ ($\lambda_1 \ge \lambda_2 \ge \lambda_3$).

4.2. Метод максимальной завихренности

Метод максимальной завихренности был предложен в работе [11]. Этот метод основан на одном из определений вихревого течения и заключается в нахождении локального максимума модуля вектора завихренности в плоскости, перпендикулярной направлению этого вектора. Этот метод позволяет определить точную ось продольного вихря в случае достаточного разрешения расчетной сетки.

5. Применение методов визуализации

В этой части работы представлены результаты анализа и сравнения численных данных методами визуализации.

5.1. Противоположно вращающаяся пара сверхзвуковых вихрей.

Применение λ₂-метода и метода максимальной завихренности визуализации вихревых структур к рассматриваемой конфигурации пары противоположно вращающихся сверхзвуковых вихрей было продемонстрировано в [5]. Повторим здесь основные результаты.

Рисунок 2: Результат применения λ₂-метода визуализации к паре противоположно вращающихся сверхзвуковых концевых вихрей, изоповерхности уровня λ₂ = -600

 λ_2 -метод позволяет определить область вихревого течения. Результаты его применения к паре противоположно вращающихся сверхзвуковых вихрей показаны на рис. 2, на котором визуализированы изоповерхности $\lambda_2 = -600$.

На рис. 3 показаны линии уровня $\lambda_2 = -600$ в сечениях, перпендикулярных направлению набегающего потока: x = 0.1 (синий круг), x = 0.2 (зеленый круг), x = 0.3 (черный круг). Наблюдается увеличение диаметра вихревого ядра о мере удаления вниз по потоку от оси крыльев-генераторов.

Отмечено смещение противоположно вращающихся сверхзвуковых вихрей в подветренную сторону, что соотноситься с данными других авторов [12], и их отталкивание друг от друга на рассмотренной дистанции вниз по потоку от оси крыльев.

Рисунок 3: Линии уровня λ_2 = -600 в поперечных сечениях *x* = 0.1 (синяя линия), *x* = 0.2 (зеленая линия), *x* = 0.3 (черная линия), противоположно вращающиеся вихри

Результат применения метода максимальной завихренности к паре противоположно вращающихся сверхзвуковых вихрей показан на рисунке 4, им определены оси вихрей.

Рисунок 4: Определенные методом максимальной завихренности оси противоположно вращающихся сверхзвуковых вихрей (красные линии)

На рис. 5 представлены графики вертикальной координаты у осей противоположно вращающейся пары вихрей и переменной *S* (расстояние между координатой z оси вихря и концевой хордой соответствующего крыла-генератора). Эти графики, так же, как и рис. 3, демонстрируют смещение осей вихрей.

На рис. 6 показаны результаты суперпозиции метода максимальной завихренности и λ_2 критерием научной визуализации, примененных к паре противоположно вращающихся сверхзвуковых вихрей: красные линии оси вихрей расположены внутри желто-зеленой области вихрей (изоповерхности $\lambda_2 = -600$). Оба метода показывают соотносящиеся друг с другом результаты и дополняют друг друга.

5.2. Со-вращающаяся пара сверхзвуковых вихрей.

Далее в работе представлены результаты применения двух указанных методов визуализации к паре со-вращающихся сверхзвуковых вихрей.

Рисунок 5: Графики осей координат пары противоположно вращающихся вихрей, определенных методом максимальной завихренности: вертикальная координата *у* (слева) и переменная *S* (справа).

Рисунок 6: Результат суперпозиции осей пары противоположно вращающихся вихрей (красные линии), найденных методом максимальной завихренности, и области вихрей, полученной λ₂-методом, изоповерхности λ₂ = -600

Рисунок 7: Результат применения λ₂-метода визуализации к паре со-вращающихся сверхзвуковых концевых вихрей, изоповерхности уровня λ₂ = -600

На рис. 7 показаны области распространения вихрей, определенные λ_2 -методом визуализации, отображены изоповерхности $\lambda_2 = -600$.

Рисунок 8: Линии уровня λ₂ = -600 в поперечных сечениях *x* = 0.1 (синяя линия), *x* = 0.2 (зеленая линия), *x* = 0.3 (черная линия), со-вращающиеся вихри

Рисунок 9: Определенные методом максимальной завихренности оси со-вращающихся сверхзвуковых вихрей (красные линии)

Рисунок 10: Графики осей координат пары со-вращающихся вихрей, определенных методом максимальной завихренности: вертикальная координата у (слева) и переменная *S* (справа).

На рис. 8 изображены линии уровня $\lambda_2 = -600$ в поперечных направлению основного потока сечениях x = 0.1 (синяя линия), x = 0.2 (зеленая линия), x = 0.3 (черная линия). Диаметр вихревых ядер увеличивается по мере удаления вниз по потоку от крыльев-генераторов.

Отмечено круговое смещение со-вращающихся сверхзвуковых вихрей в направлении, совпадающем с направлением вращения вихрей. Это соотноситься с данными других авторов [13].

Результат определения осей пары со-вращающихся сверхзвуковых вихрей, полученных методом максимальной зависимости визуализации вихревых структур, показан на рис. 9.

Рис. 10 демонстрирует графики смещения осей пары со-вращающихся сверхзвуковых вихрей согласно изменению вертикальной координаты у и переменной *S* (расстояние между координатой z оси вихря и концевой хордой соответствующего крыла-генератора).

На рис. 11 показано совместное положение осей пары со-вращающихся сверхзвуковых вихрей, определенных методом визуализации максимальной завихренности (красные линии) и области сформировавшихся вихрей, определенных λ_2 -критерием (желто-зеленые изоповерхности $\lambda_2 = -600$). Результаты применения обоих методов научной визуализации хорошо согласуются друг с другом.

Рисунок 11: Результат суперпозиции осей пары со-вращающихся вихрей (красные линии), найденных методом максимальной завихренности, и области вихрей, полученной λ_2 -методом, изоповерхности λ_2 = -600

6. Выводы

В работе отражены результаты проведенного анализа и сравнения взаимодействия пары сверхзвуковых вихрей методами научной визуализации при числе Маха набегающего потока M = 3. Использовано два метода: λ_2 -критерий и метод максимальной завхренности. Рассмотрены две конфигурации: пары противоположно и со- вращающихся вихрей.

Для численных расчетов анализируемых данных использовался разработанный пакет программ ARES расчета трехмерных турбулентных течений. Расчеты проводились на 224 процессорах гибридной суперкомпьютерной системы К-60 в ИПМ им. М.В. Келдыша РАН.

Получено, что в обоих случаях вихри представляют собой продольные конусообразные структуры, чей диаметр постепенно расширяется по мере удаления вниз по потоку от оси крыльев-генераторов.

Определены оси вихрей методом максимальной завихренности визуализации течений. После зоны немонотонности, связанной с зоной формирования вихрей, показано смещение вихрей для обоих рассмотренных случаев на рассмотренных дистанциях. Для случая противоположно вращающихся вихрей наблюдается их смещение в подветренную сторону крыльев-генераторов и легкое их расхождение друг от друга. Для случая со-вращающихся вихрей наблюдается вращение вихрей друг вокруг друга в направлении совпадающем с направлением вращения в теле вихрей. Таким образом, наблюдается взаимное влияние вихрей друг на друга при их совместном распространении.

7. References

- [1] C.D. Hansen, C.R. Johnson (Eds.), The Visualization Handbook, NY: Academic Press, 2004, 984 p.
- [2] P. Chakraborty, S. Balachandar, R. G. Adrian, On the relationships between local vortex identification schemes, J. Fluid Mech. (2005), volume 535, 189-214.
- [3] V. Kolář, Brief Notes on Vortex Identification, Recent Advances in Fluid Mechanics, Heat and Mass Transfer and Biology, WSEAS Press, 2011, pp 23-29.
- [4] К. Н. Волков, Методы визуализации вихревых течений в вычислительной газовой динамике и их применение при решении прикладных задач, Научно-технический вестник информационных технологий, механики и оптики (2014), том 14 (3).
- [5] V.E. Borisov, A.A. Davydov, T.V. Konstantinovskaya, A.E. Lutsky, Application of scientific visualization tools in the study of supersonic vortex pair, Scientific Visualization (2020) volume 12, number 4, 46 55, doi: 10.26583/sv.12.4.05 Communications of the ACM 50 (2007) 36–44. doi:10.1145/1188913.1188915.
- [6] В.Е. Борисов, А.А. Давыдов, И.Ю. Кудряшов, А.Е. Луцкий, Программный комплекс ARES для расчета трехмерных турбулентных течений вязкого сжимаемого газа на высокопроизводительных вычислительных системах (2019). Свидетельство о регистрации программы для ЭВМ RU 2019667338, выдано 23.12.2019.
- [7] https://www.kiam.ru/MVS/resourses/k60.html
- [8] В.Е. Борисов, А.Е. Луцкий, Моделирование перехода между регулярным и маховским отражением ударных волн с помощью неявной схемы на основе методов LU-SGS и BiCGStab, Препринты ИПМ им. М.В. Келдыша (2016), № 68, 36 с.
- [9] S. R. Allmaras, F. T. Johnson, P. R. Spalart, Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model, 7th Int. Conf. on CFD (ICCFD7) 2012, Big Island, Hawaii (9-13 July 2012), ICCFD7-1902.
- [10] J. Jeong, F. Hussain, On the identification of a vortex. Journal of Fluid Mechanics (1995), volume 285, pp. 69–94.
- [11] R.C. Strawn, D.N. Kenwright, J. Ahmad, Computer visualization of vortex wake systems, AIAA Journal (1999), volume 37(4), pp. 511–512.
- [12] K. J. Forster, T. J. Barber, S. Diasinos, G. Doig, Interaction of a counter-rotating vortex pair at multiple offsets, Experimental Thermal and Fluid Science J. (2017), volume 86, pp. 63-74.
- [13] Y. Wang, P. Liu, T. Hu, Q. Qu, Investigation of co-rotating vortex merger in ground proximity, Aerospace Science and Technology (2016), volume 53, pp. 116-127.