Визуализация двух противоположно вращающихся сверхзвуковых вихрей[†]

В. Борисов¹, А. Давыдов¹, Т. Константиновская¹, А. Луцкий¹

¹ Институт Прикладной Математики им.М.В. Келдыша РАН, 125047, Москва, Россия allutsky@yandex.ru konstantinovskaya.t.v@gmail.com

Аннотация. В работе выполнена визуализация пары сверхзвуковых противоположно вращающихся вихрей с использованием методов максимальной завихренности и λ₂-критерия. Численные данные были получены на суперкомпьютерной системе К-60 в ИПМ им. М.В. Келдыша РАН с использованием параллельного алгоритма для моделирования турбулентных течений.

Ключевые слова: идентификация вихря, концевой вихрь, противоположно вращающиеся вихри.

1 Введение

Полет любого летательного аппарата (ЛА) сопровождается образованием вихревых структур за ним, в частности, концевых вихрей на кромках крыльев и прочих деталей.

Изучение сверхзвуковых концевых вихрей, а также их взаимодействия представляется актуальным в виду возросшего интереса к сверхзвуковым ЛА как в военной промышленности, так и в гражданской отрасли. Однако наряду с вопросом получения корректных данных о течении, существует вопрос постобработки и визуализации полученных данных, зачастую оказывающихся весьма массивными, особенно в трехмерном случае. Для этого используются, в частности, специальные методы визуализации вихревых течений. Обширные обзоры были сделаны по данной тематике различными авторами, в том числе [1–3].

Авторами представлена визуализация результатов численного исследования пары противоположно вращающихся сверхзвуковых концевых вихрей с помощью метода максимальной завихренности и λ_2 -критерия визуализации вихревых структур.

[†] Работа выполнена при поддержке гранта РФФИ № 19-01-00765.

2 Конфигурация модели

Методы визуализации применены к данным, полученным при моделировании пары сверхзвуковых противоположно вращающихся вихрей при числе Маха набегающего потока M = 3.

Численно исследовалось течение за двумя соосными крыльями с острыми передней, задней и боковой кромками и ромбовидным основанием (рис.1). Крылья располагались под углом 10° к набегающему потоку и крепились основанием к стенкам, параллельным его направлению. Расчеты проводились в безразмерных величинах [4], за единицу длины бралось L = 1 м. Хорда каждого крыла была равна b = 0.03, полуразмах первого крыла $l_1 = 0.075$, второго $l_2 = 0.095$. Толщина ромбовидного основания обоих крыльев равнялась h = 0.004. Расстояние между концевыми хордами крыльев составило $l_3 = 0.03$, таким образом, ширина области между стенками равнялась H = 0.2. Ось х была сонаправлена набегающему потоку. Ось *z* совпадала с общей осью крыльев. Ось *y* была направлена с подветренной стороны крыльев в наветренную сторону. Длина рассматриваемой области составляла 10 хорд крыла вниз по потоку от общей оси крыльев. Число Рейнольдса в расчетах задавалось равным $Re_L = 1 \times 10^7$.

3 Численный метод

Численное моделирование проводилось в ИПМ им. М.В. Келдыша РАН на суперкомпьютере К-60 с помощью разработанного авторами программного комплекса ARES [5] для расчета трехмерных турбулентных течений вязкого сжимаемого газа на высокопроизводительных вычислительных системах. Численный метод основан на решении нестационарных осредненных по Рейнольдсу уравнений Навье-Стокса (URANS) с моделью турбулентности Спаларта-Аллмараса [6,7]. Для дискретизации уравнений по пространству использовался метод конечных объемов с реконструкциями 2-го (TVD) и 3-го (WENO) порядков. Временная аппроксимация была выполнена на основе явной схемы. Расчеты проводились на неструктурированной гексагональной сетке, состоящей из 25 774 200 ячеек.

Рис. 1. Расчетная область, соосные крылья-генераторы концевых вихрей

4 Визуализация вихрей

Внутри программного комплекса ARES был разработан отдельный постпроцессинговый модуль расчета данных для определения вихревых структур для гексагональных сеток. Метод максимальной завихренности в нем реализован полностью, а для применения λ_2 -метода вычислены необходимые матрицы. Модуль формирует данные вихревых структур в формате пакета программ Tecplot, с помощью которой в дальнейшем осуществляется визуализация результатов расчетов.

4.1 λ2-метод

 λ_2 -метод (или критерий) для идентификации вихрей был предложен в работе [8]. Согласно данному критерию область вихревого течения определяется, исходя из анализа собственных чисел симметричной матрицы $S^2 + \Omega^2$, которые всегда вещественны (здесь S и Ω соответственно тензоры деформации и завихренности течения). Вихревой областью при этом считается часть пространства, в которой второе собственное число $\lambda_2 < 0$ ($\lambda_1 \ge \lambda_2 \ge \lambda_3$). Этот метод является достаточно широко распространенным и часто применяется при обработке данных.

На рис. 2 представлены результаты применения λ_2 -метода для визуализации результатов расчетов описанной выше задачи. Этот метод позволяет найти область вихревого течения, ограниченную изолиниями отрицательного значения собственного числа λ_2 . На рис. З изображены линии уровня $\lambda_2 = -600$ в сечениях, перпендикулярных направлению набегающего потока: x = 0.1, x = 0.2, x = 0.3. В сечении x = 0.1 значения λ_2 изображены заполненным красным и синим цветом, в сечении x = 0.2 – зеленым кругом, в сечении x = 0.3 – черным кругом. Отмече-

но смещение противоположно вращающихся вихрей вверх (в подветренную сторону), что соотносится с данными других авторов [9] и их расхождение на данных дистанциях вниз по потоку от оси крыльев. Отмечено расширение диаметра зоны вихря по мере удаления вниз по потоку от оси крыльев.

Рис. 2. Пара противоположно вращающихся сверхзвуковых концевых вихрей, визуализированная с помощью λ_2 -метода (изолинии уровня $\lambda_2 = -600$)

Рис. 3. Линии уровня $\lambda_2 = -600$ в сечениях x = 0.1 (разделение красного и синего цветов), x = 0.2 (зеленый круг), x = 0.3 (черный круг)

4.2 Метод максимальной завихренности

Метод максимальной завихренности был предложен в работе [10]. Он основан на одном из определений вихревого течения и заключается в нахождении локального максимума модуля вектора завихренности в плоскости, перпендикулярной направлению этого вектора. Этот метод позволяет определить, например, точную ось продольного вихря в случае достаточного разрешения расчетной сетки.

На рис. 4 показаны оси концевых вихрей, найденные методом максимальной завихренности для рассмотренной выше задачи (красные линии).

Отдельный интерес представляет собой визуализация области формирования вихря (зона сворачивания жгута концевого вихря), более детальное представление о которой позволяют получить изолинии завихренности. На рис. 5 видно, как пелена с концевой кромки крыла сворачивается в жгут.

Рис. 4. Оси пары противоположно вращающихся сверхзвуковых концевых вихрей (красные линии)

Рис. 5. Зона сворачивания жгута концевого вихря: изолинии завихренности равной 2000 для крыла с полуразмахом 0.075 с разных ракурсов

На рис. 6 показано совместное положение осей пары вихрей, определенных методом максимальной завихренности (красные линии) в области сформировавшегося вихря, и зоны вихрей, найденной λ_2 -методом (зеленые изоповерхности), $\lambda_2 = -600$.

Рис. 6. Суперпозиция осей вихрей (красные линии), найденных методом максимальной завихренности, и области вихрей, полученной применением λ_2 -метода, $\lambda_2 = -600$

5 Заключение

В работе приведены результаты применения двух методов визуализации вихревых структур для пары сверхзвуковых противоположно вращающихся концевых вихрей: λ_2 -критерий и метод максимальной завихренности. λ_2 -критерий позволяет получить вихревую область вокруг моделируемых концевых вихрей, в то время как метод максимальной завихренности обеспечивает определение положения оси вихрей, а также наглядно демонстрирует сворачивание вихревого жгута. В целом можно отметить, что данные методы хорошо дополняют друг друга, позволяя получить подробную картину течения, которая может быть использована в дальнейшем для анализа процессов в вихревой зоне.

Литература

- Chakraborty, P., Balachandar, S., Adrian, R. G.: On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189-214 (2005)
- Волков, К. Н.: Методы визуализации вихревых течений в вычислительной газовой динамике и их применение при решении прикладных задач. Научно-технический вестник информационных технологий, механики и оптики 14(3) (2014)
- Jiang, M., Machiraju, R., Thompson, D.: Detection and visualization of vortices. Visualization Handbook.: Elsevier, Burlington, pp. 295–309 (2005)
- Быков, Л.В., Молчанов, А.М., Щербаков, М.А., Янышев, Д.С.: Вычислительная механика сплошных сред в задачах авиационной и космической техники. ЛЕНАНД, Москва, 688 (2015)
- Борисов В.Е., Давыдов А.А., Кудряшов И.Ю., Луцкий А.Е. Программный комплекс ARES для расчета трехмерных турбулентных течений вязкого сжимаемого газа на высокопроизводительных вычислительных системах. Свидетельство о регистрации программы для ЭВМ RU 2019667338, 23.12.2019.
- 6. Борисов В.Е., Луцкий А.Е. Моделирование перехода между регулярным и маховским отражением ударных волн с помощью неявной схемы на основе методов LU-SGS и BiCGStab. Препринты ИПМ им. М.В. Келдыша. 2016. № 68. 36 с.
- Allmaras, S. R., Johnson, F. T., Spalart, P. R.: Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model. 7th Int. Conf. on CFD (ICCFD7) 2012, Big Island, Hawaii (9-13 July 2012)
- Jeong, J., Hussain, F.: On the identification of a vortex. Journal of Fluid Mechanics 285, 69–94 (1995)
- 9. Forster, K. J., Barber, T. J., Diasinos, S., Doig, G.: Interaction of a counter-rotating vortex pair at multiple offsets. Experimental Thermal and Fluid Science J. 86, 63-74 (2017)
- Strawn, R.C., Kenwright, D.N., Ahmad, J: Computer visualization of vortex wake systems. AIAA Journal 37(4), 511–512 (1999)