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We consider the problem of mesh preparation for subsequent simulations. The Cartesian shrink-wrapping technique is used to 

construct a triangular mesh on dirty input geometry. Supported imperfections are gaps, overlaps, inconsistent normal orientations and 

self-intersections. Wrapping is stored using octree. An octree is refined adaptively to follow a form of the original mesh. Initial 

watertight mesh which is extracted from octree is improved using nodes projection to original triangulation and by local operations 

such as swap edge, collapse edge, and Laplacian smoothing. 
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1. Introduction 

Significant performance boost of the computers attracted close 

attention to automatic mesh generation. Mesh processing covers 

such engineering practices as mesh healing, mesh construction 

from triangles soup, adapting design models for simulation etc. 

The necessity of healing often emerges after data exchange 

different CAD application. Diverse tolerance handling 

approaches may ruin model for further use obtained via neutral 
formats like STEP or IGES. 

Usually, healing is performed manually, and this process is 

tedious and time-consuming. The proposed approach allows 

reducing the number of manual operations related to detecting 

and fixing of self-intersections, gaps, overlaps and inconsistent 
normal orientations. 

Generally, there are two main ways to deal with imperfections. 

Methods of the first group modify existing mesh or CAD. 

Another group is intended to build a new object, which is close 

to the original one. The second approach gives more freedom, 
so it is used in most cases. 

On the CAD level, some clean-up simplification techniques 

were introduced using a virtual topology concept [14]. For 

meshes, various re-meshing articles were published ([3] and 

[12]). The common point between them is that they cannot deal 

with all kinds of topological and geometric problems 

simultaneously. It is necessary to produce a pipeline of methods 
where each algorithm fixes only some defects. 

The robust industrial healing algorithms are often based on the 

volumetric representation. Initially, Kobbelt suggested shrink-

wrapping concept in [8]. His idea was to wrap a thin 

deformable surface around the initial mesh. Wang [18] carried 

out research based Cartesian grid approach to deal with some 

imperfections. In that study, all the Cartesian cells intersecting 

the entity are refined recursively to satisfy cell size criterion. 

Bischoff [1] presented a method to extract manifold meshes 

from architectural models using dual contouring [5].  

Lee [10] overcame the most of these issues using a Cartesian 

grid approach. Grid size functions ([19] and [20]) were utilized 

to refine cell adaptively. They took outer (or inner) wrapping 

constructed on the Cartesian grid of the input mesh as the 

original watertight deformable surface. After that, the watertight 

mesh is projected to the surface. At the end, the mesh is refined 

to obtain better skewness and aspect ratio. The method is based 
on the Wang’s [18] interior-to-boundary approach. 

Recent research of Juretić [6] was connected to holes detection 

based on the intensity of heat fluxes in various places of the 

input surface mesh. Another way of holes handling was 

proposed by Martineau [11] where the wrapping and volumetric 
mesh generator are combined. 

Octree usage ([13], [15]) is the well-established technique to 

represent arbitrary free-form objects in the three-dimensional 

space. Octree fills the space using hierarchically structured axis-

aligned boxes. Lee [10] states that octree construction requires 

more CPU time compared to the Cartesian grid but the lower 

amount of memory. In our study, we use octrees to build the 

adaptive representation of input mesh due to the following 
reasons: 

 Construction simplicity. 

 Effective parallelization. Nodes of octree do not 

depend on each other so that they can be processed in 

a parallel mode. 

 Low memory consumption.  

Many computational problems such as initial watertight nodes 

projection, self-intersection state checking or neighbors 

detection for a particular node can be effectively solved using 

accelerating data structures like bounding volumes hierarchy 

([2], [9] and [16]). The idea of BVH is to subdivide a set of 

primitives built on input object recursively until some target 

criterion is met. In case of mesh input, as we have, no mesh 

conversion is needed since it is possible to reflect the mesh 
triangle as a primitive of BVH.  

Usually, the result of wrapping is not directly suitable for 

analysis because of insufficient quality of mesh triangles. Local 

operators like edge swap, edge collapse [17] are used to 

improve the quality of the resulting mesh. Also, it is possible to 

use some decimation techniques [7], but they are not 

investigated in this study. If the quality of the resulting mesh is 

not an aim, this algorithm can be applied as automatic feature 

suppressor [11]. 

In our study, we present a “boundary-to-interior” method 

according to Wang terminology [18]. The idea is to convert the 

initial model to the volumetric form presented as octree and 

extract initial outer watertight mesh. After that, initial mesh is 

projected to the original mesh, and possible self-intersections 

are eliminated. At the end of the algorithm, mesh quality is 

improved.  

2. Algorithm 

The input for our algorithm is a mesh presented in 

stereolithography (STL) format. The majority of CAD systems 

provide the possibility to save faceted representation in that 

format due to its simplicity and portability. 

The algorithm has one parameter to tune – minimal allowed 

voxel size. This parameter determines the maximal gap which 

algorithm can cover. 

The algorithm has three main stages: 

 Construction of original watertight mesh. 

 Projection + Self-intersections elimination. 
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 Mesh quality improvements. 

 

2.1 Watertight mesh construction 

The octree is a tree-like data structure where each non-leaf node 

has 8 children. Figure 1 illustrates the octree structure. 

 
Figure 1: Octree structure. 

 

The root node of voxel octree corresponds to the axis-aligned 

bounding box of dirty input mesh. The tree is constructed layer 

by layer and nodes of fixed depth are checked for subdividing 

in a parallel way. The number of nodes grows exponentially (up 

to 8𝑘 nodes on the k layer). Adaptivity may significantly 

decrease this value. Our experiments show linear speed up on 

trees with more than one hundred thousand nodes. Subdividing 

is made taking into account the following principles: 

 It is not necessary to subdivide nodes which do not 

intersect input triangles. Subdivision requires 

effective box-mesh intersection checks. In our 

research, it is done using BVH where triangles of the 

input dirty mesh are used as primitives. Separation 

axis theorem is used to check intersection state 

between triangles and boxes. Let 𝑁 be the number 

triangles in input mesh and 𝑀 – the number of nodes 

in the octree. BVH allows checking intersection state 

in 𝑂(𝑙𝑜𝑔(𝑁)) time for each box in case of proper 

balancing. The tree itself can be built on linear-

logarithmic time. So, the full complexity of this 

operation in case of BVH usage is 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁) +
  𝑀 ∗ log(𝑁)) while direct naive implementation 

requires 𝑂(𝑁 ∗ 𝑀) operations.  

 Subdivision of intersecting nodes is not obligatory in 

case of quasi-planar intersecting triangles. MCAD 

models deal with canonical geometry, and it is a usual 

case to deal with (Figure 2 and Figure 3). Subdivision 

check is implemented by calculating the maximal 

angle between normals of triangles intersecting the 

current node. Besides, it is possible to construct gauss 

maps to speed up this check. 

 
Figure 2: Faceted representation of MBB Gehause rohteil 

model with planar faces. 

 

 
Figure 3:  Demonstration of octree node which should not 

be subdivided (red lines) and intersecting facets of input model 

(yellow color). 

 

Outer mesh extraction is hardly possible for arbitrary octree. 

The nature of this problem is connected to possible size jumps 

of adjacent nodes. In general, their sizes can have 2𝑛: 1 

gradation (Figure 4).  

 
Figure 4: Octree with 8:1 relation. Outer contour extraction 

will add many points to the yellow face. 

 

Again, effective neighbor detection is based on BVH data 

structure.  For that, leaf nodes are converted to BVH primitives, 

and simple box intersections are used to check intersection. All 

neighbors for a particular node can be detected as all nodes 

intersecting enlarged bounding box of the current node. Since 

we know the minimal allowed cell size, it is easy to avoid 

numerical stability problems increasing bounding box by some 

value smaller than minimal size (“0.1 * minimal size” for 

example). The result of that process is demonstrated by Figure 

5. 

 
Figure 5: Model conversion to 2:1 form. Original node 

connections are marked by yellow color, from left to right. 

 

One additional problem should be solved before outer contour 

extraction. Usually, adjacent nodes have non-manifold 

connections. In our paper conformity restoration is performed 

by adding new cells. The resulting tree might break 2:1 

gradation rule and its restoration is needed. In general, initial 

polygons can have up to 8 points. Polygons are not tessellated 

during initial wrapping construction; it is performed after 

projection. It allows getting better quality mesh since in 

projection optimal tessellation may change. To conclude, 

watertight mesh construction involves the following steps: 

 

1. Construct initial octree. 

2. Convert octree to 2:1 form. 

3. Resolve non-manifold joints. 
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4. Convert octree to 2:1 form again. 

5. Extract outer or inner wrapping. 

 

2.2 Projection and self-intersection elimination 

The first and the most critical step in watertight mesh 

improvement is projection. Nowadays, typical watertight 

wrapped mesh consists of million triangles. The efficiency of 

the projection procedure is crucial for the construction of a real 

industrial application. Direct exhaustive implementation of the 

projection algorithm requires 𝑂(𝑀 ∗ 𝑁) operations. As an 

alternative to it, BVH-driven projection gives about 𝑀 ∗ log(𝑁) 

time complexity. 

 

As mentioned above, the projection procedure comprises 

several healing steps like sticking polygons treatment. Usually, 

sticking polygons appear when input geometry has a substantial 

amount of planar places. The list of problems and their origins 

is presented below: 

 Two polygons with equal nodes – move polygon 

nodes back in projection directions.  It happens when 

the whole polygon is positioned at shell part of input 

mesh. 

 A polygon with wrong normal – remove it. Non-

manifold joints resolving adds new nodes some of 

them are placed inside the input geometry. Another 

source of that problem is sharp and complicated input 

geometry. 

 A polygon with sticking nodes – collapse degeneracy. 

It arises when an edge of a polygon is orthogonal to 

input mesh. 

 A polygon without area – remove it. It comes when 

the original non-projected polygon is entirely 

orthogonal to input mesh. 

It turns out that nearest projection leads to a situation when 

neighbor nodes are projected in opposite directions. Sometimes, 

it indicates insufficient amount of octree refinement steps but, 

typically, the best cell size is unknown. That is why this issue is 

addressed. First, the accumulated length of node’s outgoing 

edges is calculated, and it is compared with a perimeter of faces 

containing these nodes. If these two values are too far from 

each other new position will be assigned to the node using 

smoothing. Node is projected to original mesh once again after 

smoothing to sure that node is lies on the input triangulation. 

Wrong projection incident is shown in Figure 6. 

 
Figure 6: Wrong projection. 

 

The last step of projection routine is self-intersection correction. 

Unlike the previous problems before, this issue is more 

geometric than topological. It means that implementation 

should be robust enough to fight with numerical issues raised 

from floating point operations performed using IEEE 754 

standard. This idea should be kept in mind while developing 

algorithms for detection and fixing of self-intersections. Self-

intersections are obtained using BVH tree to reduce complexity 

from quadratic to linear-logarithmic. The intersecting pairs are 

grouped into clusters according to their adjacency. Each cluster 

is processed independently in a parallel mode that decreases 

execution time. Intersections are amended using smoothing. 

The idea is to keep cluster boundary untouched and modify 

only internal nodes. 

 

2.3 Mesh quality improvements 

Usually, outer wrapping is not applicable for analysis after 

projection due to near degenerated polygons. The ordinary way 

to improve mesh quality is to apply local topological operators 

like edge swap, face collapse etc. The following metrics are 

utilized to check mesh quality: 

 Skewness. 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 1 −
2𝑟

𝑅
, where 𝑟 is the radius 

of the inscribed circle and 𝑅 is the radius of the 

circumscribed circle. 

 Aspect ratio. 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝐿

𝑙
, where 𝐿 is the length 

of the longest side, 𝑙 is the length of the shortest side. 

Thanks to polygons usage on the previous steps of the 

algorithm, it is possible to build different triangulations and get 

better mesh quality. The triangulation algorithm is based on the 

ear-slicing approach [4]. It tessellates arbitrary convex or 

concave polygon to triangles but in a non-optimal manner. 

Greedy-algorithm is used to determine the best ear to slice since 

brute-force check of all possible tessellations is computationally 

ineffective. Despite the execution time, some workflows like 

volumetric mesh generation may benefit from optimal 

tessellation because the mesh is constructed by increasing 

dimensions from lower to higher and excellent quality in the 

previous dimension is mandatory to build fine mesh in upper 

dimensions.  

 

The local mesh operators like edge collapse are used to improve 

the quality of tessellated triangular mesh.  In our algorithm the 

following operators are implemented: 

 Collapse edge. The lengths of all neighbors are 

calculated for the target edge. If an edge is several 

times shorter than all its neighbors, the target edge 

will be collapsed. 

 Split edge. Neighbor lengths are calculated like in 

case before. If the target edge’s length is significantly 

bigger than neighbor lengths a new node will be 

introduced in edge, while two adjacent faces 

containing the target edge will be split into four 

triangles. 

 Swap edge. Sometimes two faces containing target 

edge may be improved by connecting non-shared 

nodes of triangles and removing existing target edge.  

All mentioned operations are safe from self-intersection 

perspective. It is checked that the mesh is not corrupted during 

modification. In general, this leads to a situation when arbitrary 

mesh cannot be converted to an optimal state.  

 

3. Mesh generation examples 

Our algorithm is capable of generating watertight meshes for 

many types of imperfections like non-manifold topology or 

overlaps. The examples presented in that section are intended to 

demonstrate obtained performance and applicability of our 

method for industrial use. 

3.1 Geometric primitives: sphere, cylinder, and 
cube 

These cases are aimed to demonstrate basic wrapping abilities 

and robustness against common defects. The initial mesh, 

shown in Figure 7, has a missing triangle, that situation 

emulates erroneous data translation from one format to another. 

The sphere has a radius of 0.1 m, and the longest side of the 

missing triangle has a 0.0018 m length. This model is processed 

with 0.005 m cell size, and the result is shown in Figure 8. 
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Figure 7: Sphere with missing triangle (marked by the red 

ellipse). 

 

 
Figure 8: Wrapped mesh. 

 

The mesh presented in the Figure 9 demonstrates the result of 

inaccurate modeling when two objects are mutually 

intersecting. This artificial model is constructed using two 

orthogonal cylinders with a radius of 0.01 m and 0.1 m in 

length. Wrapped mesh generated using 0.001 m cell size fixes 

the problem. It should be noted, that this case also shows the 

conversion possibility from CAD-based mesh to its computer 

graphics equivalent. The result of wrapping is shown in Figure 

10.  

 
Figure 9: Cylinder models and cylinders with clipping 

planes (intersection is marked by red color), from left to right. 

 

 
Figure 10: Wrapped cylinders and clipped cylinders, from 

left to right. 

 

 

The cube model displayed on the left side of Figure 11 has 0.1 

m size length. This model is used to compare execution time, 

the number of triangles and peak memory consumption of 

uniform and adaptive versions of the wrapping. Table 1 shows 

almost linear increasing of all tracked parameters; however, 

Table 2 demonstrates square complexity for uniform octree 

construction. 

 
Figure 11: Original box, adaptive wrapping and uniform 

wrapping from left to right. 

 

 

Cell size, 

mm: 

Execution 

time, sec: 

Max used 

memory, 

MiB: 

Number of 

triangles: 

0.5 0.91 44 6912 

0.25 2.08 54 16224 

0.125 4.50 75 35520 

0.0625 9.76 125 74784 

Table 1: Adaptive wrapping of the cube model. 

 

Cell size, 

mm: 

Execution 

time, sec: 

Max used 

memory, 

MiB: 

Number of 

triangles: 

0.5 1.35 51 12288 

0.25 5.86 94 49152 

0.125 23.60 249 196608 

0.0625 96.37 959 786432 

Table 2: Uniform wrapping of the cube model. 

 

3.2 Industrial model: engine 

The following example is designed to reveal envelope 

construction capabilities on the real industrial model. The 

model shown in Figure 12 is the wright whirlwind radial 

engine. The model sizes are equal to 250, 300 and 550 mm for 

X, Y and Z axis correspondingly. The CAD model containing 

1002 parts is meshed, and the input mesh has 1635339 

triangles. This mesh is wrapped with cell size equal to 1.0 mm. 

The resulting mesh presented in Figure 13 has 1120166 

triangles and 559839 nodes. Multiple problems with non-valid 

topology, self-intersecting mesh are detected and healed during 

envelope construction. 

 
Figure 12: Radial engine model. 
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Figure 13: Engine model wrapping, constructed in 48 

minutes and 44 seconds on core i5-3450 CPU. 

4. Conclusion and further work 

This article presents a mesh generation method for surface 

wrapping on dirty models. No assumptions about quality of 

input mesh are made. The proposed approach fixes both 

geometrical and topological problems such as overlaps, open 

boundary edges, and non-manifold configurations. The octree is 

used to construct adaptive outer wrapping. The quality of the 

resulting mesh is controlled by the minimal allowed cell size, 

and this value defines the gap filling capability of the algorithm. 

Initial outer wrapping is refined to reach computational mesh 

quality using local operators, such as edge collapse, edge split, 

and edge swap. Laplacian smoothing is used for eliminating 

self-intersections and deeper refinement of the mesh quality. 

 

The method can be further improved in several ways. Some 

sub-routines should be investigated to be used in parallel mode. 

Memory usage is another room for improvement since existing 

implementation is not optimized from a memory point of view. 

  

In many practical cases, model features like sharp edges 

preserving should be kept, but no delicate algorithms are 

investigated in that study. The present approach smooths input 

geometry which is considered as an automatic feature 

suppression mechanism.  

 

The topological state of the result of the wrapping and meshing 

can be enhanced by the usage of proximity size functions 

proposed by Zhu [20]. Specialized algorithms for efficient 

proximity computation should be developed. 

 

Finally, the proposed algorithm can be adapted for various case 

studies like protection of intellectual properties, model 

simplification, and preparation for thermal, fluid or aero 

analysis.  
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