
GraphiCon 2018 Автоматизация проектирования, тренажеры и симуляторы

24–27 сентября 2018, Томск, Россия 479
Работа опубликована при финансовой поддержке РФФИ, грант 18-07-20045\18

Adaptive mesh generation using shrink wrapping approach

A. Malyshev
1
, A. Zhidkov

2
, V. Turlapov

1

al.s.malyshev@gmail.com|artem.zhidkov@opencascade.com|vadim.turlapov@itmm.unn.ru
1
 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

2
 Open Cascade, Guyancourt, France

We consider the problem of mesh preparation for subsequent simulations. The Cartesian shrink-wrapping technique is used to

construct a triangular mesh on dirty input geometry. Supported imperfections are gaps, overlaps, inconsistent normal orientations and

self-intersections. Wrapping is stored using octree. An octree is refined adaptively to follow a form of the original mesh. Initial

watertight mesh which is extracted from octree is improved using nodes projection to original triangulation and by local operations

such as swap edge, collapse edge, and Laplacian smoothing.

Keywords: shrink wrapping, octree, bounding volumes hierarchy.

1. Introduction

Significant performance boost of the computers attracted close

attention to automatic mesh generation. Mesh processing covers

such engineering practices as mesh healing, mesh construction

from triangles soup, adapting design models for simulation etc.

The necessity of healing often emerges after data exchange

different CAD application. Diverse tolerance handling

approaches may ruin model for further use obtained via neutral
formats like STEP or IGES.

Usually, healing is performed manually, and this process is

tedious and time-consuming. The proposed approach allows

reducing the number of manual operations related to detecting

and fixing of self-intersections, gaps, overlaps and inconsistent
normal orientations.

Generally, there are two main ways to deal with imperfections.

Methods of the first group modify existing mesh or CAD.

Another group is intended to build a new object, which is close

to the original one. The second approach gives more freedom,
so it is used in most cases.

On the CAD level, some clean-up simplification techniques

were introduced using a virtual topology concept [14]. For

meshes, various re-meshing articles were published ([3] and

[12]). The common point between them is that they cannot deal

with all kinds of topological and geometric problems

simultaneously. It is necessary to produce a pipeline of methods
where each algorithm fixes only some defects.

The robust industrial healing algorithms are often based on the

volumetric representation. Initially, Kobbelt suggested shrink-

wrapping concept in [8]. His idea was to wrap a thin

deformable surface around the initial mesh. Wang [18] carried

out research based Cartesian grid approach to deal with some

imperfections. In that study, all the Cartesian cells intersecting

the entity are refined recursively to satisfy cell size criterion.

Bischoff [1] presented a method to extract manifold meshes

from architectural models using dual contouring [5].

Lee [10] overcame the most of these issues using a Cartesian

grid approach. Grid size functions ([19] and [20]) were utilized

to refine cell adaptively. They took outer (or inner) wrapping

constructed on the Cartesian grid of the input mesh as the

original watertight deformable surface. After that, the watertight

mesh is projected to the surface. At the end, the mesh is refined

to obtain better skewness and aspect ratio. The method is based
on the Wang’s [18] interior-to-boundary approach.

Recent research of Juretić [6] was connected to holes detection

based on the intensity of heat fluxes in various places of the

input surface mesh. Another way of holes handling was

proposed by Martineau [11] where the wrapping and volumetric
mesh generator are combined.

Octree usage ([13], [15]) is the well-established technique to

represent arbitrary free-form objects in the three-dimensional

space. Octree fills the space using hierarchically structured axis-

aligned boxes. Lee [10] states that octree construction requires

more CPU time compared to the Cartesian grid but the lower

amount of memory. In our study, we use octrees to build the

adaptive representation of input mesh due to the following
reasons:

 Construction simplicity.

 Effective parallelization. Nodes of octree do not

depend on each other so that they can be processed in

a parallel mode.

 Low memory consumption.

Many computational problems such as initial watertight nodes

projection, self-intersection state checking or neighbors

detection for a particular node can be effectively solved using

accelerating data structures like bounding volumes hierarchy

([2], [9] and [16]). The idea of BVH is to subdivide a set of

primitives built on input object recursively until some target

criterion is met. In case of mesh input, as we have, no mesh

conversion is needed since it is possible to reflect the mesh
triangle as a primitive of BVH.

Usually, the result of wrapping is not directly suitable for

analysis because of insufficient quality of mesh triangles. Local

operators like edge swap, edge collapse [17] are used to

improve the quality of the resulting mesh. Also, it is possible to

use some decimation techniques [7], but they are not

investigated in this study. If the quality of the resulting mesh is

not an aim, this algorithm can be applied as automatic feature

suppressor [11].

In our study, we present a “boundary-to-interior” method

according to Wang terminology [18]. The idea is to convert the

initial model to the volumetric form presented as octree and

extract initial outer watertight mesh. After that, initial mesh is

projected to the original mesh, and possible self-intersections

are eliminated. At the end of the algorithm, mesh quality is

improved.

2. Algorithm

The input for our algorithm is a mesh presented in

stereolithography (STL) format. The majority of CAD systems

provide the possibility to save faceted representation in that

format due to its simplicity and portability.

The algorithm has one parameter to tune – minimal allowed

voxel size. This parameter determines the maximal gap which

algorithm can cover.

The algorithm has three main stages:

 Construction of original watertight mesh.

 Projection + Self-intersections elimination.

CAD/CAM/CAE, trainers and simulators GraphiCon 2018

480 September 24–27, 2018, Tomsk, Russia
The publication of the conference proceedings was supported by the RFBR, grant No. 18-07-20045\18

 Mesh quality improvements.

2.1 Watertight mesh construction

The octree is a tree-like data structure where each non-leaf node

has 8 children. Figure 1 illustrates the octree structure.

Figure 1: Octree structure.

The root node of voxel octree corresponds to the axis-aligned

bounding box of dirty input mesh. The tree is constructed layer

by layer and nodes of fixed depth are checked for subdividing

in a parallel way. The number of nodes grows exponentially (up

to 8𝑘 nodes on the k layer). Adaptivity may significantly

decrease this value. Our experiments show linear speed up on

trees with more than one hundred thousand nodes. Subdividing

is made taking into account the following principles:

 It is not necessary to subdivide nodes which do not

intersect input triangles. Subdivision requires

effective box-mesh intersection checks. In our

research, it is done using BVH where triangles of the

input dirty mesh are used as primitives. Separation

axis theorem is used to check intersection state

between triangles and boxes. Let 𝑁 be the number

triangles in input mesh and 𝑀 – the number of nodes

in the octree. BVH allows checking intersection state

in 𝑂(𝑙𝑜𝑔(𝑁)) time for each box in case of proper

balancing. The tree itself can be built on linear-

logarithmic time. So, the full complexity of this

operation in case of BVH usage is 𝑂(𝑁 ∗ 𝑙𝑜𝑔(𝑁) +
 𝑀 ∗ log(𝑁)) while direct naive implementation

requires 𝑂(𝑁 ∗ 𝑀) operations.

 Subdivision of intersecting nodes is not obligatory in

case of quasi-planar intersecting triangles. MCAD

models deal with canonical geometry, and it is a usual

case to deal with (Figure 2 and Figure 3). Subdivision

check is implemented by calculating the maximal

angle between normals of triangles intersecting the

current node. Besides, it is possible to construct gauss

maps to speed up this check.

Figure 2: Faceted representation of MBB Gehause rohteil

model with planar faces.

Figure 3: Demonstration of octree node which should not

be subdivided (red lines) and intersecting facets of input model

(yellow color).

Outer mesh extraction is hardly possible for arbitrary octree.

The nature of this problem is connected to possible size jumps

of adjacent nodes. In general, their sizes can have 2𝑛: 1

gradation (Figure 4).

Figure 4: Octree with 8:1 relation. Outer contour extraction

will add many points to the yellow face.

Again, effective neighbor detection is based on BVH data

structure. For that, leaf nodes are converted to BVH primitives,

and simple box intersections are used to check intersection. All

neighbors for a particular node can be detected as all nodes

intersecting enlarged bounding box of the current node. Since

we know the minimal allowed cell size, it is easy to avoid

numerical stability problems increasing bounding box by some

value smaller than minimal size (“0.1 * minimal size” for

example). The result of that process is demonstrated by Figure

5.

Figure 5: Model conversion to 2:1 form. Original node

connections are marked by yellow color, from left to right.

One additional problem should be solved before outer contour

extraction. Usually, adjacent nodes have non-manifold

connections. In our paper conformity restoration is performed

by adding new cells. The resulting tree might break 2:1

gradation rule and its restoration is needed. In general, initial

polygons can have up to 8 points. Polygons are not tessellated

during initial wrapping construction; it is performed after

projection. It allows getting better quality mesh since in

projection optimal tessellation may change. To conclude,

watertight mesh construction involves the following steps:

1. Construct initial octree.

2. Convert octree to 2:1 form.

3. Resolve non-manifold joints.

GraphiCon 2018 Автоматизация проектирования, тренажеры и симуляторы

24–27 сентября 2018, Томск, Россия 481
Работа опубликована при финансовой поддержке РФФИ, грант 18-07-20045\18

4. Convert octree to 2:1 form again.

5. Extract outer or inner wrapping.

2.2 Projection and self-intersection elimination

The first and the most critical step in watertight mesh

improvement is projection. Nowadays, typical watertight

wrapped mesh consists of million triangles. The efficiency of

the projection procedure is crucial for the construction of a real

industrial application. Direct exhaustive implementation of the

projection algorithm requires 𝑂(𝑀 ∗ 𝑁) operations. As an

alternative to it, BVH-driven projection gives about 𝑀 ∗ log(𝑁)

time complexity.

As mentioned above, the projection procedure comprises

several healing steps like sticking polygons treatment. Usually,

sticking polygons appear when input geometry has a substantial

amount of planar places. The list of problems and their origins

is presented below:

 Two polygons with equal nodes – move polygon

nodes back in projection directions. It happens when

the whole polygon is positioned at shell part of input

mesh.

 A polygon with wrong normal – remove it. Non-

manifold joints resolving adds new nodes some of

them are placed inside the input geometry. Another

source of that problem is sharp and complicated input

geometry.

 A polygon with sticking nodes – collapse degeneracy.

It arises when an edge of a polygon is orthogonal to

input mesh.

 A polygon without area – remove it. It comes when

the original non-projected polygon is entirely

orthogonal to input mesh.

It turns out that nearest projection leads to a situation when

neighbor nodes are projected in opposite directions. Sometimes,

it indicates insufficient amount of octree refinement steps but,

typically, the best cell size is unknown. That is why this issue is

addressed. First, the accumulated length of node’s outgoing

edges is calculated, and it is compared with a perimeter of faces

containing these nodes. If these two values are too far from

each other new position will be assigned to the node using

smoothing. Node is projected to original mesh once again after

smoothing to sure that node is lies on the input triangulation.

Wrong projection incident is shown in Figure 6.

Figure 6: Wrong projection.

The last step of projection routine is self-intersection correction.

Unlike the previous problems before, this issue is more

geometric than topological. It means that implementation

should be robust enough to fight with numerical issues raised

from floating point operations performed using IEEE 754

standard. This idea should be kept in mind while developing

algorithms for detection and fixing of self-intersections. Self-

intersections are obtained using BVH tree to reduce complexity

from quadratic to linear-logarithmic. The intersecting pairs are

grouped into clusters according to their adjacency. Each cluster

is processed independently in a parallel mode that decreases

execution time. Intersections are amended using smoothing.

The idea is to keep cluster boundary untouched and modify

only internal nodes.

2.3 Mesh quality improvements

Usually, outer wrapping is not applicable for analysis after

projection due to near degenerated polygons. The ordinary way

to improve mesh quality is to apply local topological operators

like edge swap, face collapse etc. The following metrics are

utilized to check mesh quality:

 Skewness. 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 1 −
2𝑟

𝑅
, where 𝑟 is the radius

of the inscribed circle and 𝑅 is the radius of the

circumscribed circle.

 Aspect ratio. 𝑎𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝐿

𝑙
, where 𝐿 is the length

of the longest side, 𝑙 is the length of the shortest side.

Thanks to polygons usage on the previous steps of the

algorithm, it is possible to build different triangulations and get

better mesh quality. The triangulation algorithm is based on the

ear-slicing approach [4]. It tessellates arbitrary convex or

concave polygon to triangles but in a non-optimal manner.

Greedy-algorithm is used to determine the best ear to slice since

brute-force check of all possible tessellations is computationally

ineffective. Despite the execution time, some workflows like

volumetric mesh generation may benefit from optimal

tessellation because the mesh is constructed by increasing

dimensions from lower to higher and excellent quality in the

previous dimension is mandatory to build fine mesh in upper

dimensions.

The local mesh operators like edge collapse are used to improve

the quality of tessellated triangular mesh. In our algorithm the

following operators are implemented:

 Collapse edge. The lengths of all neighbors are

calculated for the target edge. If an edge is several

times shorter than all its neighbors, the target edge

will be collapsed.

 Split edge. Neighbor lengths are calculated like in

case before. If the target edge’s length is significantly

bigger than neighbor lengths a new node will be

introduced in edge, while two adjacent faces

containing the target edge will be split into four

triangles.

 Swap edge. Sometimes two faces containing target

edge may be improved by connecting non-shared

nodes of triangles and removing existing target edge.

All mentioned operations are safe from self-intersection

perspective. It is checked that the mesh is not corrupted during

modification. In general, this leads to a situation when arbitrary

mesh cannot be converted to an optimal state.

3. Mesh generation examples

Our algorithm is capable of generating watertight meshes for

many types of imperfections like non-manifold topology or

overlaps. The examples presented in that section are intended to

demonstrate obtained performance and applicability of our

method for industrial use.

3.1 Geometric primitives: sphere, cylinder, and
cube

These cases are aimed to demonstrate basic wrapping abilities

and robustness against common defects. The initial mesh,

shown in Figure 7, has a missing triangle, that situation

emulates erroneous data translation from one format to another.

The sphere has a radius of 0.1 m, and the longest side of the

missing triangle has a 0.0018 m length. This model is processed

with 0.005 m cell size, and the result is shown in Figure 8.

CAD/CAM/CAE, trainers and simulators GraphiCon 2018

482 September 24–27, 2018, Tomsk, Russia
The publication of the conference proceedings was supported by the RFBR, grant No. 18-07-20045\18

Figure 7: Sphere with missing triangle (marked by the red

ellipse).

Figure 8: Wrapped mesh.

The mesh presented in the Figure 9 demonstrates the result of

inaccurate modeling when two objects are mutually

intersecting. This artificial model is constructed using two

orthogonal cylinders with a radius of 0.01 m and 0.1 m in

length. Wrapped mesh generated using 0.001 m cell size fixes

the problem. It should be noted, that this case also shows the

conversion possibility from CAD-based mesh to its computer

graphics equivalent. The result of wrapping is shown in Figure

10.

Figure 9: Cylinder models and cylinders with clipping

planes (intersection is marked by red color), from left to right.

Figure 10: Wrapped cylinders and clipped cylinders, from

left to right.

The cube model displayed on the left side of Figure 11 has 0.1

m size length. This model is used to compare execution time,

the number of triangles and peak memory consumption of

uniform and adaptive versions of the wrapping. Table 1 shows

almost linear increasing of all tracked parameters; however,

Table 2 demonstrates square complexity for uniform octree

construction.

Figure 11: Original box, adaptive wrapping and uniform

wrapping from left to right.

Cell size,

mm:

Execution

time, sec:

Max used

memory,

MiB:

Number of

triangles:

0.5 0.91 44 6912

0.25 2.08 54 16224

0.125 4.50 75 35520

0.0625 9.76 125 74784

Table 1: Adaptive wrapping of the cube model.

Cell size,

mm:

Execution

time, sec:

Max used

memory,

MiB:

Number of

triangles:

0.5 1.35 51 12288

0.25 5.86 94 49152

0.125 23.60 249 196608

0.0625 96.37 959 786432

Table 2: Uniform wrapping of the cube model.

3.2 Industrial model: engine

The following example is designed to reveal envelope

construction capabilities on the real industrial model. The

model shown in Figure 12 is the wright whirlwind radial

engine. The model sizes are equal to 250, 300 and 550 mm for

X, Y and Z axis correspondingly. The CAD model containing

1002 parts is meshed, and the input mesh has 1635339

triangles. This mesh is wrapped with cell size equal to 1.0 mm.

The resulting mesh presented in Figure 13 has 1120166

triangles and 559839 nodes. Multiple problems with non-valid

topology, self-intersecting mesh are detected and healed during

envelope construction.

Figure 12: Radial engine model.

GraphiCon 2018 Автоматизация проектирования, тренажеры и симуляторы

24–27 сентября 2018, Томск, Россия 483
Работа опубликована при финансовой поддержке РФФИ, грант 18-07-20045\18

Figure 13: Engine model wrapping, constructed in 48

minutes and 44 seconds on core i5-3450 CPU.

4. Conclusion and further work

This article presents a mesh generation method for surface

wrapping on dirty models. No assumptions about quality of

input mesh are made. The proposed approach fixes both

geometrical and topological problems such as overlaps, open

boundary edges, and non-manifold configurations. The octree is

used to construct adaptive outer wrapping. The quality of the

resulting mesh is controlled by the minimal allowed cell size,

and this value defines the gap filling capability of the algorithm.

Initial outer wrapping is refined to reach computational mesh

quality using local operators, such as edge collapse, edge split,

and edge swap. Laplacian smoothing is used for eliminating

self-intersections and deeper refinement of the mesh quality.

The method can be further improved in several ways. Some

sub-routines should be investigated to be used in parallel mode.

Memory usage is another room for improvement since existing

implementation is not optimized from a memory point of view.

In many practical cases, model features like sharp edges

preserving should be kept, but no delicate algorithms are

investigated in that study. The present approach smooths input

geometry which is considered as an automatic feature

suppression mechanism.

The topological state of the result of the wrapping and meshing

can be enhanced by the usage of proximity size functions

proposed by Zhu [20]. Specialized algorithms for efficient

proximity computation should be developed.

Finally, the proposed algorithm can be adapted for various case

studies like protection of intellectual properties, model

simplification, and preparation for thermal, fluid or aero

analysis.

5. References

[1] Aichholzer, O. and Aurenhammer, F. 1996. Straight

skeletons for general polygonal figures in the plane.

Computing and Combinatorics, Lecture Notes in Computer

Science Volume 1090. (1996), pp 117-126.

[2] Chen, X.D., Yong, J.H., Wang, G., Paul, J.C. and Xu, G.

2008. Computing the minimum distance between a point

and a NURBS curve. CAD Computer Aided Design. 40,

10–11 (2008), 1051–1054.

[3] Coupez, T., Digonnet, H. and Ducloux, R. 2000. Parallel

meshing and remeshing. Applied Mathematical Modelling.

25, 2 (2000), 153–175.

[4] ElGindy, H., Everett, H. and Toussaint, G. 1993. Slicing

an ear using prune-and-search. Pattern Recognition

Letters. 14, 9 (1993), 719–722.

[5] Ju, T., Losasso, F., Schaefer, S. and Warren, J. 2002. Dual

contouring of hermite data. ACM Transactions on

Graphics. 21, 3 (2002).

[6] Juretić, F. and Putz, N. 2014. Applications of heat-

diffusion equation for surface wrapping: Hole detection

and normal orientation. Engineering with Computers. 30, 3

(2014), 363–374.

[7] Kobbelt, L., Campagna, S. and Seidel, H.-P. 1998. A

General Framework for Mesh Decimation. Graphics

Interface. (1998), 43–50.

[8] Kobbelt, L.P., Vorsatz, J., Labsik, U. and Seidel, H.-P.

1999. A Shrink Wrapping Approach to Remeshing

Polygonal Surfaces. Computer Graphics Forum. 18, 3

(1999), 119–130.

[9] Lauterbach, C., Garland, M., Sengupta, S., Luebke, D. and

Manocha, D. 2009. Fast BVH construction on GPUs.

Computer Graphics Forum. 28, 2 (2009), 375–384.

[10] Lee, Y.K., Lim, C.K., Ghazialam, H., Vardhan, H. and

Eklund, E. 2010. Surface mesh generation for dirty

geometries by the Cartesian shrink-wrapping technique.

Engineering with Computers. 26, 4 (2010), 377–390.

[11] Malyshev, A., Slyadnev, S. and Turlapov, V. 2017. Graph-

based feature recognition and suppression on the solid

models. GraphiCon 2017. (2017), 319–322.

[12] Peyré, G. and Cohen, L.D. 2006. Geodesic remeshing

using front propagation. International Journal of Computer

Vision. 69, 1 (2006), 145–156.

[13] Schneiders, R., Schindler, R. and Weiler, F. 1996. Octree-

based Generation of Hexahedral Element Meshes.

Meshing Roundtable. December 1999 (1996), 205–216.

[14] Sheffer, A., Bercovier, M., Blacker, T. and Clements, J.

2000. Virtual topology operators for meshing.

International Journal of Computational Geometry &

Applications. 10, 3 (Jun. 2000), 309–331.

[15] Shephard, M.S. and Georges, M.K. 1991. Automatic three‐

dimensional mesh generation by the finite octree

technique. International Journal for Numerical Methods in

Engineering. 32, 4 (1991), 709–749.

[16] Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann,

G., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F.,

Magnenat-Thalmann, N., Strasser, W. and Volino, P. 2005.

Collision detection for deformable objects. Computer

Graphics Forum. 24, 1 (2005), 61–81.

[17] Wang, D., Hassan, O., Morgan, K. and Weatherill, N.

2006. Enhanced remeshing from STL files with

applications to surface grid generation. Communications in

Numerical Methods in Engineering. 23, 3 (Sep. 2006),

227–239.

[18] Wang, Z.J. and Srinivasan, K. 2002. An adaptive Cartesian

grid generation method for “dirty” geometry. International

Journal for Numerical Methods in Fluids. 39, 8 (2002),

703–717.

[19] Zhu, J. 2003. A new type of size function respecting

premeshed entities. Proceedings of the 11th international

meshing roundtable. (2003), 403–413.

[20] Zhu, J., Blacker, T. and Smith, R. 2002. Background

overlay grid size functions. Proceedings of the 11th

International Meshing Roundtable. (2002), 65–73.

About authors

Vadim Turlapov (vadim.turlapov@itmm.unn.ru): Professor

of Computer Science, Lobachevsky Nizhny Novgorod

University.

Alexander Malyshev (al.s.malyshev@gmail.com): Ph.D.

student, Lobachevsky Nizhny Novgorod University.

Artem Zhidkov (artem.zhidkov@opencascade.com): Ph.D.,

OpenCascade, France.

