
GraphiCon 2018 Реалистичная графика

24–27 сентября 2018, Томск, Россия 31
Работа опубликована при финансовой поддержке РФФИ, грант 18-07-20045\18

Precomputed procedural content level of detail
V.V. Sanzharov1, V.A. Frolov2,3

vsan@protonmail.com|vova@frolov.pp.ru
1Gubkin Russian State University of Oil and Gas, Moscow, Russia;
2Keldysh Institute of Applied Mathematics RAS, Moscow, Russia;

3Moscow State University, Moscow, Russia

In this paper we address the problem of determining the detail level of precomputed procedural content for
photo-realistic rendering. We propose a rasterization prepass with an algorithm based on mipmapping to calculate
the detail levels. Suggested solution is applied to computing resolutions of procedural and image textures and mesh
subdivision levels.

Keywords: procedural textures, photo-realistic rendering, level of detail.

Introduction

Procedural content is a basis of todays cinema and
VFX (visual effects) industrial pipeline because it al-
lows to reduce the cost of manual content creation.
This is also important in recent applications of photo-
realistic rendering to the synthesis of images and video
sequences for the purpose of using them as training
data for artificial intelligence algorithms in computer
vision [25] where manual content creation is infeasible
because of the dataset sizes.

The procedural approach in material modeling is
the synthesis of texture maps, which can be used to
specify the values of any material model parameters,
geometry (for example, displacement maps), and light
sources. Methods of procedural generation are often
classified as implicit or explicit [5]. Explicit meth-
ods calculate the whole texture in advance. These
textures can be used further by the lighting model-
ing system as conventional images. Implicit methods
define the texture as a function of some arguments,
for example, from the coordinate in the texture or
world space and calculate it ”on the fly”. Basically,
the algorithm responds with a value to a query about
particular sample. This approach implies the creation
of some algorithmic description of the desired visual
result.

Procedural texture synthesis overview

Implicit texture synthesis techniques have been
used for quite a long time, one of the first major
breakthroughs being Perlin noise algorithm [23] back
in 1985, and are continually being developed (for ex-
ample [7, 14, 20]). These methods have several advan-
tages - texture maps are not stored in memory and
don’t have fixed resolution (the texture is infinite and
has no seams). Also, textures can be parametrized
with arbitrary values (for example, world space posi-
tion) and therefore applied to geometry without uv-
unwrapping. By changing the input parameters it’s
possible to get a large number of different texture
variants. Disadvantages include: the complexity of
the process of algorithmic formalization, the need for
careful manual adjustment of parameters to achieve a

desired result and independent texture samples eval-
uation. This restricts the generalization possibilities
and therefore limits the variability in resulting tex-
tures. Still, implicit methods are widely used in com-
puter graphics and are implemented in many software
products (Houdini, Blender, Maya, 3ds Max, etc.).

In explicit texture synthesis texel values are inter-
dependent and therefore can’t be evaluated indepen-
dently. A detailed review of early explicit methods is
presented in [26]. Example based and most statistical
texture synthesis algorithms are classified as explicit.
Example based methods are being actively developed
by improving existing algorithms [10, 11], applying
neural networks [6, 18] and combining existing algo-
rithms with neural networks [4, 17]. One of the main
advantages of these methods is that they don’t suf-
fer from the problem of formalizing the desired result
which is represented by an example image passed as
an input to the algorithm. Among the shortcomings
is a considerable amount of computations usually re-
quired for these methods, which directly depends on
the output texture resolution. As reported in [13] run-
ning time for texture synthesis algorithms ranges from
seconds to minutes and may even reach hours for large
resolutions.

Existing problems
Resolution influences the size of the texture in

memory, time needed to execute texture synthesis al-
gorithm and image quality in rendering. Thus, for
photo realistic rendering it is crucial to determine the
texture resolution which will provide the best per-
ceived quality with the smallest possible size in mem-
ory and computation time. Another problem arises
when rendering system needs to support existing im-
plementations of implicit texture synthesis methods in
closed-source software like Maya and 3ds Max. This
usually means that the renderer should call a virtual
function provided by the software API to get the tex-
ture sample value. So, if the address space where the
renderer is running differs from the address space of
the procedural texture implementation (for example,
the renderer runs on the GPU or on a different com-
puter), it’s simply not possible to query these proce-

Realistic Graphics GraphiCon 2018

32 September 24–27, 2018, Tomsk, Russia
The publication of the conference proceedings was supported by the RFBR, grant No. 18-07-20045\18

dural textures during rendering like it should be done
with implicit texture synthesis. Therefore, to sup-
port them the renderer developers need to take on a
different approach. The first option is to implement
analogous procedural textures in the rendering sys-
tem and match their input parameters with existing
software. This has to be done for every product the
rendering system wishes to integrate into. And the
second (and less expensive) option is to treat these
procedural textures as explicit - that is precompute
them before rendering. And again, this leads to the
same problem - the need to determine the resolution.

In this paper we suggest an approach to esti-
mate resolution for procedural textures precomputa-
tion for photo-realistic rendering systems. Proposed
solution can also be used to resize bitmap textures and
with some modifications applied to other preliminary
computations like estimation of subdivision level for
meshes subject to displacement.

Related work

Existing approaches for the most part are con-
cerned with level of detail (and therefore resolution)
estimation for image textures in real-time rendering.
Conventional solutions to the problem of texture res-
olution selection are based around mipmapping [28]
and involve storing several copies of an image with
different resolutions - mipmap pyramid, out of which
appropriate mip level is selected at rendering time
usually based on the projected size of a textured ob-
ject. There are methods enabling parallel synthesis
of different miplevels for some of the explicit pro-
cedural textures [8, 16, 27]. Some methods focus
on performing relatively small amount of preliminary
computations which are then used to speed up sub-
sequent synthesis of the whole image pyramid [3].
An optimization to mipmapping called clipmapping
[24] is based on the idea that for a large texture not
all data of a mipmap is used in rendering of a par-
ticular frame so it is sufficient to only store parts
of a mipmap which are potentially visible - clipped
mipmap. More complex approach - virtual texturing
[1, 15, 22] is based around splitting texture into uni-
form tiles and loading into video memory only the
tiles needed to render a particular frame using visibil-
ity information. Virtual texturing also received hard-
ware support [2] and is available in Vulkan API and as
OpenGL ARB SPARSE TEXTURE extension [30].

Limitations of existing solutions
Existing solutions to determine the texture resolu-

tion focus on application to real-time rendering and
are designed to be implemented as a part of a ren-
dering pipeline. Since we need to estimate resolution
for precomputed procedural textures before rendering,
these approaches don’t solve the problem, at least by
themselves. The other challenge lies with the render-

ing pipeline integration - to implement any of these
methods in an existing rendering system, the ren-
dering system itself would obviously require changes
which can be substantial. For example, when the
mesh has more than one texture applied to it, using
virtual texturing requires using texture atlases [21].
Since rewriting already established parts of a com-
plex system is often undesirable, we consider this as a
disadvantage of direct implementation of these meth-
ods in the renderer. There are also other possible
problems with the approaches mentioned earlier like
visual artifacts caused mainly by filtering [1, 22]. For
some texture types, for example glossiness textures
and normal maps, mipmap filtering can lead to sig-
nificant losses in detail [29]. This is not acceptable in
photo-realistic rendering since details are one of the
foundations of a realistic image.

Suggested approach

The essence of the suggested solution is to separate
all the necessary precomputations from the rendering
system into a simple scene rasterization prepass fol-
lowed by texture synthesis. This prepass would de-
termine the resolution of the each texture in a scene
from mip levels. And mip levels are computed using
a slightly modified implementation of the approaches
suggested in [1] and provided in OpenGL API spec-
ification [30]. Now let’s consider the whole proposed
process.

Implementation details
First of all, we will need to store function pointers

and input parameters for all procedural textures used
in the scene we are going to render. This way we’ll be
able actually synthesize them after we determine the
needed resolution.

The next step is to rasterize the scene geometry
with the information on the assigned materials. Ras-
terized scene allows to determine texture coordinates
gradient for all textured objects and thus the mip
level. The equations for gradient (1, 2) are similar
to those for mip level calculation in [1] and OpenGL
API specification [30].

Gx(uv) =
R rastx
R rendx

∗ tex res ∗ ∂u

∂x
(1)

Gy(uv) =
R rasty
R rendy

∗ tex res ∗ ∂v

∂y
(2)

R rastx, R rasty – rasterization resolution, R rendx,
R rendy – photo-realistic rendering resolution,
tex res – texture resolution, u, v – texture coordi-
nates, x, y – rasterized image coordinates.

However, for procedural textures tex res is un-
known and it is actually the value we want to de-
termine. So, let’s assume for the moment that it is
an arbitrarily high resolution which we want to re-
duce. Also we need to take into account ratio be-

GraphiCon 2018 Реалистичная графика

24–27 сентября 2018, Томск, Россия 33
Работа опубликована при финансовой поддержке РФФИ, грант 18-07-20045\18

tween rasterization resolution (R rastx, R rasty) and
actual photo-realistic rendering resolution (R rendx,
R rendy) since these can be different - rasterized im-
age only serves a utility function and there is no need
for it to be high resolution while photo-realistic ren-
dering obviously can have arbitrary resolution.

The gradients are then used to compute the mip
level mip lvl (3) analogous to OpenGL specification
[30] and [1]:

mip lvl = log2[max(Gx, Gy)] (3)
After mip levels are calculated we find the max-

imum mip level for each texture in the scene - the
same textures can have different materials mip levels
in different materials and on different geometry. So,
we basically retain only the maximum level from the
mip pyramid for each texture. Required resolution R
is then calculated with (4).

R =
tex res

2mip lvl
(4)

After substituting the mip lvl in (4) with (3) and
(1, 2) we get the following (5):

R =
tex res

max(R rastx
R rendx

∗ tex res
∂u
∂x

,
R rasty
R rendy

∗ tex res
∂v
∂y

)
(5)

It’s obvious, that tex res can be eliminated, yield-
ing the final equation for the resolution (6):

R = max(
R rendx
R rastx

∗ 1
∂u
∂x

,
R rendy
R rasty

∗ 1
∂v
∂y

) (6)

All that is left is to pass the obtained resolution to
the stored texture synthesis functions.

The same procedure can be applied to the «or-
dinary» image textures to resize them to the 1-to-
1 pixel-to-texel ratio for the sake of possible mem-
ory saves. It’s straightforward to incorporate differ-
ent maximum allowed mip levels for different texture
types, for example, to force the reflection or bump tex-
tures to be generated in higher resolution than diffuse
textures.

Limitations and special cases
There are several special cases which cannot be

tackled by suggested approach directly. The first
such case is a scene with transparent objects - with
straightforward rasterization they can potentially oc-
clude other objects and interfere with detail level cal-
culation. This situation can be handled by perform-
ing two rasterization passes for detail level estimation
- one for all non-transparent objects and the other for
transparent objects.

The second more complex case concerns textured
objects visible as reflections (possibly after multiple
reflections/refractions). This is a very difficult situa-
tion for rasterization and multiple bounces are nearly
impossible to handle. Within the framework of our
approach it can be addressed heuristically - for a re-
flected object we can safely assume that it won’t be

larger than the screen resolution and resize the tex-
tures accordingly. Obviously, it’s not very efficient
but still allows for possible memory savings. Another
heuristic would be to assign to not directly visible ob-
jects the level of detail computed for the largest visible
reflective object (i.e. mirror) in the scene.

A promising way for solving the challenge of re-
flections more rigorously is using techniques like ray
differentials [9] with an upcoming real-time ray trac-
ing technology [31].

Application to other precomputed effects
Proposed solution can also be applied to other pre-

computed effects, in particular to compute subdivision
level for meshes. Since in the essence, texture mip
level and geometry subdivision level both represent
the same notion of detail level. For example, in [19]
clipmapping ideas were applied to mesh subdivision
in terrain generation from a height map. The goal of
precomputing mesh subdivision instead of evaluating
it at render time is 1) to do the computation only once
in the case of rendering on multiple machines and 2)
to keep the rendering system implementation simpler.
To utilize the rasterization prepass described earlier to
calculate the per-mesh subdivision factor some modi-
fications are required. First of all, the gradient should
be calculated for the positions, not the texture coor-
dinates. This way we can obtain the detail level per
mesh. To get different subdivision levels on the same
big mesh (like terrain), it needs to be split into re-
gions, for example as proposed in [19].

Results and discussion

We tested our approach on 3 scenes (fig. 1) which
use procedural and image textures. First we rendered
scenes with image textures in their respective native
resolution and all procedural textures with manually
picked reasonable resolutions. Rendered images ob-
tained this way served as references. Then, we ren-
dered the same scenes with the same image and pro-
cedural textures but the rasterization prepass was ex-
ecuted to determine the resolution for textures before
actual rendering. Scenes were rendered with our own
C++/OpenCL path tracing implementation on the
GPU. The comparison of the results with the refer-
ences in terms of overall memory needed for textures
(table 1) showed several times lower memory size with
rasterization prepass. Visual perception comparison
(fig. 2, fig. 3, fig. 4) shows no perceptible differences
as confirmed by mean square error (MSE) values (ta-
ble 2). We also tested our approach in application
to computation of the subdivision level (fig. 5, fig. 6)
using non-adaptive sqrt 3 [12] subdivision algorithm.
First, terrain generated from height map was subdi-
vided before displacement with the same level across
all three parts (separate meshes). Next, modified ras-
terization prepass was used to determine the subdi-

Realistic Graphics GraphiCon 2018

34 September 24–27, 2018, Tomsk, Russia
The publication of the conference proceedings was supported by the RFBR, grant No. 18-07-20045\18

vision levels per mesh. Applying suggested prepass
allowed to reduce the amount of memory needed for
geometry from 185 Mb to 89 Mb while maintaining
image quality.

Conclusion

Proposed approach allows for tangible memory
savings compared to naive approach of simply synthe-
sizing procedural textures with a same fixed resolution
and passing images into rendering system as they are.

Scene, rendering resolution Ref., Mb Ours, Mb Ratio
Arch, 1920 x 1080 276 156 1.77
Arch, 3840 x 2160 276 173 1.60

Bathroom, 1024 x 1024 521 142 3.67
Bathroom, 2048 x 2048 521 178 2.93
Alley, 1024 x 1024 527 129 4.09
Alley, 2048 x 2048 527 146 3.61

Table 1. Memory used by textures

Scene MSE
Alley 1.67

Bathroom 3.59
Arch 3.02

Table 2. Mean Square Error (MSE) for rendered images
(computed after tone mapping, i.e. in low dynamic range)

Figure 1. Test scenes - Arch, Bathroom, Alley. Arch and
Alley - primarily procedural textures, Bathroom - high

resolution bitmaps

Figure 2. Reference vs With resized textures, Bathroom

Figure 3. Reference vs Difference vs With resized
textures. Bathroom scene, in top row - bitmap diffuse
texture, bottom row - bump map computed from bitmap

Figure 4. Reference vs Difference vs With resized
textures. Alley scene, procedural noise-based texture on
an object with one of the texture coordinates stretched out

geom. size in memory: 185 Mb 89 Mb

Figure 5. Terrain subdivision with uniform subdivision
levels vs subdivision levels computed by prepass, terrain

mesh generated from height map

GraphiCon 2018 Реалистичная графика

24–27 сентября 2018, Томск, Россия 35
Работа опубликована при финансовой поддержке РФФИ, грант 18-07-20045\18

Figure 6. Neighboring mesh grids fragment. Left to
right: no prepass applied - uniform subdivision levels;
reduced by prepass - the closest and the middle meshes;
reduced by prepass - the middle and the farthest meshes.
The farther the mesh is from the camera - the smaller its
subdivision levels and therefore more sparse mesh grid

Acknowledgments

This work was sponsored by RFBR 16-31-60048
«mol a dk».

References

[1] Barrett S. Sparse virtual textures
http://silverspaceship.com/src/svt/

[2] Bilodeau B., Sellers G. and Illesland K. Partially
Resident Textures on Next-Generation GPUs //
Game Developers Conference, 2012.

[3] Dong Y., Lefebvre S., Tong X. and Drettakis, G.
Lazy Solid Texture Synthesis // Computer Graph-
ics Forum, 2008, 27: 1165-1174

[4] Dong J., Wang L., Liu J., Sun X. A Procedural
Texture Generation Framework Based on Seman-
tic Descriptions // arXiv:1704.04141, 2017

[5] Ebert D.S., Musgrave F.K., Peachey D., Perlin K.,
and Worley S. Texturing and Modeling: A Proce-
dural Approach. // Morgan Kaufmann, 1998.

[6] Gatys L.A., Ecker A.S., Bethge M. Texture Syn-
thesis Using Convolutional Neural Networks //
arXiv:1505.07376, 2015

[7] Gilet G., Sauvage B., Vanhoey K., Dischler J.-M.,
and Ghazanfarpour D. Local random-phase noise
for procedural texturing // ACM Trans. Graph.,
2014, Vol. 33(6), Article 195

[8] Han C. et al. Multiscale texture synthesis // ACM
Trans. Graph., 2008, Vol. 27(3), p. 51.

[9] Igehy H. Tracing Ray Differentials // Proceedings
of ACM SIGGRAPH, 1999, pp. 179-186.

[10] Jamriška O., Fišer J., Asente P., Lu J., Shecht-
man E., and Sýkora D. LazyFluids: appearance
transfer for fluid animations // ACM Trans.
Graph., 2015, Vol. 34(4), Article 92

[11] Kaspar A., Neubert B., Lischinski D., Kopf J. Self
Tuning Texture Optimization // Computer Graph-
ics Forum 34(2), 2015

[12] Kobbelt L. √ 3-subdivision // Proceedings of
ACM SIGGRAPH, 2000

[13] Kolář M. , Debattista K. and Chalmers A. A Sub-
jective Evaluation of Texture Synthesis Methods //
Computer Graphics Forum 36: 189-198, 2017

[14] Lefebvre L., Poulin P. Analysis and synthesis of
Structural Textures // Proceedings of Graphics In-
terface 2000, pp. 77-86

[15] Lefebvre S., Darbon J., Neyret F. Unified texture
management for arbitrary meshes // Technical Re-
port RR5210-, INRIA, may 2004

[16] Lefebvre S., Hoppe H. Parallel controllable tex-
ture synthesis // ACM Trans. Graph., 2005, Vol.
24(3), pp. 777-786.

[17] Li C., Wand M. Combining Markov Random
Fields and Convolutional Neural Networks for Im-
age Synthesis // arXiv:1601.04589, 2016

[18] Li Y., Fang C., Yang J., Wang Z., Lu X., Yang
M.-H. Diversified Texture Synthesis with Feed-
Forward Networks // IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR),
2017, p. 266-274

[19] Losasso F., Hoppe H. Geometry clipmaps: ter-
rain rendering using nested regular grids. // ACM
Trans. Graph., 2014, Vol. 23(3), pp. 769-776.

[20] Maung D., Shi Y., Crawfish R. Procedural tex-
tures using tilings with Perlin Noise. // 60-65.
10.1109/CGames.2012.6314553

[21] Mayer A.J. Virtual texturing // Master’s thesis,
Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Oct. 2010.

[22] Mittring M. et al. Advanced virtual texture topics
// ACM SIGGRAPH 2008, 2008, p. 23-51.

[23] Perlin K. An Image Synthesizer // Proceedings
of ACM SIGGRAPH, pp. 287–296, 1985

[24] Tanner C.C., Migdal C.J., Jones M.T. The
clipmap: a virtual mipmap // Proceedings of ACM
SIGGRAPH, 1998, p. 151-158.

[25] Tsirikoglou A., Kronander J., Wrenninge
M., Unger J. Procedural Modeling and Phys-
ically Based Rendering for Synthetic Data
Generation in Automotive Applications //
arxiv.org:1710.06270v2, 2017

[26] Wei L.-Y., Lefebvre S., V. Kwatra, G. Turk State
of the Art in Example-based Texture Synthesis //
Eurographics 2009, EG-STAR 2009

[27] Wei L. and Levoy M. Order-independent texture
synthesis // Tech. Rep. TR-2002-01, Stanford Uni-
versity CS Dept.

[28] Williams L. Pyramidal parametrics // ACM SIG-
GRAPH Computer Graphics, vol. 17, no. 3, pp.
1–11, Jul. 1983

[29] Yan L.Q., Hašan M., Jakob W., Lawrence J.,
Marschner S., Ramamoorthi R.Rendering glints
on high-resolution normal-mapped specular sur-
faces // ACM Trans. Graph., 2014, Vol. 33(4), p.
116.

[30] Khronos registry https://www.khronos.org/registry
[31] Nvidia RTX https://developer.nvidia.com/rtx

