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In this work we propose way of combining ordinary and Markov chain Monte Carlo rendering techniques in 
image space. We used per-pixel mask to separate pixels (which we want to run Markov chain on) from the rest 
of the image. The mask was obtained from the ordinary Monte Carlo noise analysis. The proposed method was 
tested with combination of Multiplexed Metropolis Light Transport as Markov chain technique and two ordinary 
Monte Carlo rendering techniques - Instant Bidirectional Path Tracing and Light Tracing. As a result, our 
method allows us to get better accuracy in comparison to ordinary Monte Carlo and a better visual perception in 
comparison to Markov chain Monte Carlo techniques with the same rendering time.
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1. Introduction

Light transport algorithms have progressed signif-
icantly last 10 years. The evolution of light transport
algorithms proceeded in two parallel ways: Ordinary
Monte Carlo (OMC) and Markov Chain Monte Carlo
(MCMC). Both ways have their own advantages and
disadvantages.

2. Previous work

2.1 Ordinary Monte Carlo and MIS
OMC way includes such methods as Path Trac-

ing (PT), Light Tracing (LT) and Bidirectional Path
Tracing (BPT) [1, 15, 18], Photon Mapping (PM) [6,
9], Bidirectional Photon Mapping (BDPM) [20, 22],
Vertex Connection and Merging (VCM) [4, 7] and
other. These methods are often used in industry but
they are not efficient for complex lighting phenomena
in general (such efficiency is called «robustness» [18]).

Most robust OMC methods are based on Multi-
ple Importance Sampling (MIS) technique which has
strong mathematical foundation for variance reduc-
tion. The main idea of MIS is to use many different
ways of sampling lighting integral with a posteriori
weighing samples according to their probability den-
sity.

Unfortunately, Multiple Importance Sampling has
strong disadvantage: the more robust algorithm be-
comes, the less average rendering speed it gains. This
is the result of weighting samples since usually among
many weights only a few are significantly different
from zero [15]. At the same time sampling with many
different strategies is expensive: N2 shadow sam-
ples in BPT or density estimation on each bounce in
BDPM are such examples.

2.2 Markov Chain Monte Carlo
In contrast to MIS (which samples proportion-

ally to several parts of integrand by each strategy),
Markov chain based methods [10, 11, 19, 21] create
samples proportional to the final answer — lighting

integral itself. This is achieved by representing light-
ing integral as multidimentional function projected to
the image plane: F (x, y, r0, r1, ...rn)

project−−−−−→ F (x, y).
With such representation Markov chain places more
samples (via Metropolis algorithm) in more complex
regions of multidimentional space automatically and
thus greatly reduces variance.

It should be noted that Markov chains and MIS
nevertheless should be used together. The key to suc-
cess here is to construct good integration space in
which Metropolis algorithm and MIS will strengthen
but not compete with each other. This is the
main idea of Multiplexed Metropolis Light Trans-
port (MMLT) algorithm [5]. MMLT uses Markov
chain including for sampling strategy selection which
completely eliminates discussed MIS disadvantage be-
cause low contribution strategies are rarely selected.
More advanced Markov chain algorithms are con-
structed on top of MMLT framework or use similar
principles [12, 14, 17].

Unfortunately, Markov chain methods have their
own disadvantages. First, they have distinctive, vi-
sual unpleasent artifacts, especially in the begining of
rendering. These artifacts are caused by high correla-
tions of samples (excluding [17]) so that image shows
the trajectories of Markov chains movements in the
image space. Second, precision for short rendering
time may be even less than for OMC methods due to
the startup bias. Finally, Markov chain methods are
inefficient for rendering direct light due to almost all
samples would be placed at bright locations (for exam-
ple even not noisy light surface!). MMLT amortizes
last disadvantage in some degree (due to possibility
of manual control chains number per each reflection
depth) but does not solve same problem for caustics:
large and bright areas always take most of computa-
tional resources even if these areas do not have true
hard-sampling light transport phenomena.

2.3 Combining OMC and MCMC
At first, any practical implementation of MCMC

rendering technique will separate direct and indirect
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light calculations due to the reason discussed above.
Second, normalization constant should be estimated
and good starting points for Markov chain have to
be selected to reduce startup bias. Thus, in practice,
OMC and MCMC always work together.

Next, known ways of combining OMC and MCMC
for the same lighting phenomena are implemented
though Multiple Importance Sampling and have cer-
tain restrictions. Kelemen et al. in [11] has shown
that large steps for Primary Sample Space Metropolis
light transport (PSSMLT) can be used as a separate
integration strategy and thus, OMC and MCMC can
be combined together via MIS. Moreover, this method
can be considered as a «shareware» due to the fact
that large steps in PSSMLT will be computed anyway
like other proposals. However, here are the limitations
of Kelemen et al. approach (which we call «Kelemen
MIS» further):

(1) Shareware Kelemen MIS, obviously, can not
be used to combine rendering techniques with differ-
ent basic algorithms. For example, if Metropolis algo-
rithm is implemented on top of BPT framework, OMC
sampling analogue will be exactly the same BPT. It
does not sound as a serious disadvantage if both OMC
and MCMC versions of the same rendering technique
are good enough. However, if their efficiency differs
significantly, Kelemen MIS becomes useless. This
is exactly the case of Multiplexed Metropolis light
transport where its OMC analogue is extremely inef-
ficient due to end-points-only connections leaving few
chances for random sample to hit high contribution
region of multi-dimensional space.

(2) Bright areas (large caustics for example) are
still oversampled by MCMC technique even if OMC
can calculate them well enough. Moreover, OMC con-
tribution in such areas will be almost discarded due to
Kelemen MIS weights being evaluated from probabil-
ity densities as shown further: pomc = 1, pmcmc = I/b,
where I — MCMC image contribution function, and
b — average image brightness. In this way if I is large
enough, MIS weight for OMC contribution will tend
to zero:

womc =
p2omc

p2mcmc + p2omc

=
1

1 + (I/b)2
(1)

Hachisuka et al. in [13] suggested combining
SPPM and MLT as two completely different algo-
rithms via machine learning. Training sets were ob-
tained by classifying paths on their «path grammar».
Resulting improvements in precision and visual per-
ception turned out small. This is quite expected
because such blending didn’t go far from MIS ideas
— use 2 strategies/algorithms (which simply doubles
computational resources!) and then select best of
them by weight. Moreover, both MLT and SPPM
in general are good for the same lighting phenomena,
so, their blending has limited application.

In this way, more efficient and general method of
combining OMC and MCMC for rendering became
our research area.

3. Suggested approach

Our key idea is similar to MMLT approach — let
Markov chain to select best algorithm statistically. To
combine OMC and MCMC we propose to use «a priori
blending function» α(x, y) which marks image areas
that can not be evaluated well with OMC and uses it
as expression 2 shows:

Colorres = DOMC(x, y)+

IOMC(x, y) ∗ (1− α(x, y)) + IMCMCα(x, y).
(2)

where (x, y) are screen space coordinates,
DOMC(x, y) - direct light computed by OMC,
IOMC(x, y) - indirect light computed by OMC and
IMCMCα(x, y) - priory weighted indirect light com-
puted by MCMC. Note that IMCMCα(x, y) is not mul-
tiplied with α(x, y) because it’s already constructed
proportional to α(x, y) ∗ I(x, y) by Markov chain.

3.1 Weight functions details
We build α(x, y) by OMC noise analysis:

1. run OMC for short time (64-128 samples per pixel
in average) to compute noisy image approximation;

2. compute for each pixel its difference with median
in 5x5 or 7x7 window;

3. sort all pixels by this difference, take 10% most
noisy to assign them values in range [0,1]. This
assignment is done with sigmoid function relative
to median value of these 10% pixels so that noisy
pixels tend to one and not noisy tend to zero.

4. split the image into segments relied on the infor-
mation from G-buffer (per pixel depth, normals,
material id);

5. fill each segment with the value of it’s most noisy
pixel (fig. 1);

6. clamp values to epsilon, i.e. α(x, y) :=
max(α(x, y), ϵ);

7. assign everything greater than 0.5 to 1 and less
than 0.5 to ϵ (so that our function became binary).
Let us discuss some of these items in details. Al-

though many advanced methods of noise detection
was developed recently [2, 3, 16, 23], median differ-
ence was enough for our experiments due to the ob-
servation that if Ordinary Monte Carlo fails for some
phenomena, it gives significant ejection/spike. Seg-
ment filling was used based on similar considerations:
if some region (for example, glossy or mirrored ob-
ject) gives at least one strong spike, this region have
complex light transport phenomena and it has to be
computed using MCMC technique.

Next, it should be noted that weigh function
α(x, y) must not be zero in any region where indi-
rect light I(x, y) is not zero. This is essential for cor-
rect evaluation of premultiplied I(x, y) ∗ α(x, y) by
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MCMC due to normalisation constant is estimated
over I(x, y) ∗ α(x, y) for the whole image. Otherwise
MCMC result will have inconsistent average bright-
ness and color with the rest of image as shown at fig
2.

Indirect light Noise Blending function

Indirect light Noise Blending function
(enlarged) (enlarged) (enlarged)

Figure 1. Constructing blending function from noise and
G-buffer analysys.

ϵ = 0 ϵ = 0.05 Reference

Figure 2. Inconsistent green color of water (computed by
MCMC) whenmin(α(x, y), ϵ) tends to zero in other (non

water) regions on the image.

In this way we apply α(x, y) := max(α(x, y), ϵ)
where ϵ is a parameter equal to 0.1 (so α(x, y) fits in
range [0.1,1]). At last, we made our function binary —
clamp everything greater than 0.5 to 1 and less equal
0.5 to ϵ. This shown visually more pleasant result in
practice then blend of intermediate values for mirror
and glossy objects.

Because our blending function became binary, it is
neccesary to smooth border pixels to prevent aliasing.
Fortunately, we have segments and their exact bor-
ders, so we apply FXAA algorithm for border pixels
only to smooth them.

4. Implementation details and results

We tested our approach on 4 scenes (fig. 3) with
MMLT as a Markov chain technique and two Ordinary

Monte Carlo rendering methods - IBPT [1] and Light
Tracing. All algorithms were implemented with our
own C++ framework. As a result our method gives
less error then Ordinary Monte Carlo (table 1) and
has better visual perception in comparison to Markov
chain Monte Carlo techiques with the same rendering
time (fig. 4, 5, 6, 7). Our approach also outperforms
Kelemen MIS combining (fig 8).

Figure 3. Tests scenes.

IBPT [1] MMLT Ours Reference

Figure 4. Comparison 1. Enlarged fragments of Cornell
box with glass torus. 10 minutes.

5. Limitations

In practice we found that our approach is useful for
scenes where true hard sampling lighting phenomena
takes less then 30-40% of image pixels. Otherwise we
recommend to render image completely with MCMC
technique. This is quite expected because our method
halves computational resources for both OMC and
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MCMC methods for the fixed rendering time. Thus
if OMC technique fails for most of image pixels it be-
comes useless. Fortunately, because we have α(x, y)
in image space we can easily count per cent of com-
plex pixels and switch to «MCMC only» rendering
automatically.

IBPT [1] MMLT Ours Reference

Figure 5. Comparison 2. Enlarged fragments of Cornell
box with water. 10 minutes.

IBPT MMLT Ours Reference

Figure 6. Comparison 3. Enlarged fragments of the room
scene, 30 minutes.

Scene/Method IBPT MMLT Ours Ours combination
Thorus 15.4 7.28 12.5 IBPT + MMLT
Water 40.1 17.6 20.0 IBPT + MMLT
Room 33.5 15.6 28.1 LT + MMLT

Bathroom 58.8 32.7 45.4 LT + MMLT

Table 1. Mean Square Error (MSE); LDR space (0-255).

IBPT [1] MMLT Ours Reference

Figure 7. Comparison 4. Enlarged fragments of
bathroom scene, 10 minutes.

Kelemen MIS Ours Reference

Figure 8. Comparison of our method to blending by
Kelemen MIS weight [11].

6. Conclusions

Similar to previous approaches our algorithm
halves computational resources for both blended
methods (because we have to run 2 different algo-
rithms with the same time). In contrast to pre-
vious work, we used a priory blending weight that
allows us to evaluate complex image regions with
MCMC more efficiently in comparison to rendering
via MCMC without blending it with OMC. The in-
direct result of such approach is more pleasant view
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(without MCMC artifacts) in other regions of image
where we took result from OMC.
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