
Collision Detection for Rigid Bodies:

A State of the Art Review

Charbel Fares
1,2

and Yskandar Hamam
1,2

1LIRIS, CNRS FRE 2508, 10-12 avenue de l’Europe, 78140 Velizy, FRANCE
2ESIEE, Lab. A2SI, Cité Descartes, BP 99, 93162 Noisy-Le-Grand, FRANCE

{c.fares, y.hamam}@esiee.fr

Abstract
Virtual reality applications refer to the use of com-
puters to simulate a physical environment in such a
way that humans can readily visualize, explore, and
interact with “objects” in this environment. The
design of virtual scenes requires realistic physically
based simulation algorithms and in particular effi-
cient collision detection routines. Collision detection
prevent penetrations between objects.

This paper presents an overview of the collision
detection procedures for rigid bodies. It divides
those procedures in two families that form a general
hybrid collision detection algorithm. The first family
is used in the first phase known as broad phase
that roughly detects collision. The second family is
used in the second one known as narrow phase that
exactly detects if collision occurs.

Keywords: Collision Detection, Rigid Bodies,
Virtual Reality, Bounding Volumes Hierarchies, Pen-
etration Depth Vector.

1 Introduction

Designing an efficient collision detection system is a
bit like preparing a soup. The final will be a mixture
of different sub-systems. The importance of those
sub-systems is that when they are used alone they
can produce a similar effect to the final system but
with less resolution or slower rate.

A virtual environment is a computer-generated
world filled with virtual objects. Such an environ-
ment should give the user a feeling of presence, which
includes making the images of both the user and the
surrounding objects feel solid. For example, the ob-
jects should not pass through each other, and things
should move as expected when pushed, pulled or
grasped. Such actions require accurate collision de-
tection, if they are to achieve any degree of realism.
However, there may be hundreds, even thousands of

objects in the virtual world, so a naive algorithm
could take a long time just to check for possible col-
lisions as the user moves. This is not acceptable for
virtual environments, where the issues of interactiv-
ity impose fundamental constraints on the system. A
fast and interactive collision detection algorithm is
a fundamental component of a complex virtual en-
vironment. Ensuring objects interact in the correct
manner is very computationally intensive and much
research has addressed the issues involved with trying
to reduce the computational requirements by simpli-
fying the representation of the objects in the scene.

The range of applications that require collision de-
tection is extensive. Vehicle simulators are one case
where the users manipulate a steering device, and at-
tempt to avoid obstacles in their path [1]. In molec-
ular modeling, simulation allows interactive testing
of new drugs to examine how molecules interact and
collide with each other. Training and education sys-
tems that realistically model the movement of objects
within the geometric constraints of their layout, allow
designers to experiment interactively with different
strategies, e.g. to assemble or disassemble equipment,
to perform a virtual surgery [2]-[4], or to test different
paths that a robot could take [5]. Such simulations
are a safe provide low cost training means. Human
characters animation is one of the most challenging
topics in computer animation, and in this case colli-
sion detection is an important issue. Collision must
be detected between the virtual person and their en-
vironment [6], clothes [7] and hair [8]. Self collision
should be tested as well.

This paper addresses the following problem:
Given a virtual environment, E, in three dimensions,
and a moving object A; preprocess E and A into a
data structure of small size so that queries of the
form, “Does any of the sub-object A intersect any of
the sub-parts of E?” can be answered very rapidly.
Furthermore, a study of the problem of tracking the
motion of A within E is done in order to detect dy-

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

namically, in real time, when A collides with E.
When animating more than two objects, the most

obvious problem which arises is the O(N2) problem
of detecting collisions between all N objects. It is
obvious that this is an undesirable property of any
collision detection algorithm, and several techniques
have been proposed to deal with it such as the hybrid
collision detection approach. This approach refers to
any collision detection method which first performs
one or more iterations of approximate tests to iden-
tify interfering objects in the entire workspace and
then performs a more accurate test to identify the
object parts causing interference. Thus to solve this
problem, a hybrid collision detection approach is used
to tackle the problem in various phases. The initial
phase of such an approach, known as the broad phase,
aims to efficiently cull out pairs of objects which can-
not possibly be interacting. A number of different
techniques could be used to achieve this coarse grain
detection such as Sweep and Prune [9], global bound-
ing tables [10] or overlap tables [11]-[13]. Having de-
termined which objects are potentially interacting,
the hybrid approach a finer grained algorithm is used
to narrow in on the regions of objects which are in
contact. This narrow phase processing typically tra-
verses hierarchical representations of the objects to
hone in on the regions of interest. The broad phase
reduces the amount of work that is required to per-
form the narrow phase. Algorithms such as those
of Lin-Canny [14], V-Clip [15], I-Collide [16] or en-
hanced GJK [17] may be used in the narrow phase.

The rest of the paper is structured as follows. In
section 2 factors that affect the collision detection
design is shown. Section 3 discuses the different al-
gorithms used in the broad phase, while section 4
describes algorithms used in the narrow phase. The
penetration depth computation is shown in section 5.
Finally, conclusions is sketched in Section 6.

2 Collision Detection Design
Issues

Different factors affect the design of a collision detec-
tion system. They may be clasified into the following
categories: Object representations; Type of queries;
Number of objects.

2.1 Object Representations

Most current system uses triangles as the fundamen-
tal rendering primitive. Consequently a polygonal
representation is a nature choice for scenes. The most
generic polygonal representation is the polygon soup.

It is an unordered collection of polygons with no con-
nectivity information. Such information helps find-
ing the “inside” of an object. They include informa-
tion mentionning which edges connect to what ver-
tices and whether the object forms a closed solid or if
he is convex or concave. Adding those informations
will form a larger polygonal surface called polygonal
mesh. Building objects from a collection of polygon
meshes is one of the most common methods for au-
thoring geometrical models.

Representing polygonal objects may be done im-
plicitly or explicitly. When it is defined in terms of
vertices, edges, and faces, it is an explicit represen-
tation. However when it is defined throught a math-
ematical expression like spheres, cones, cylinders or
ellipsoids, it is an implicit representation.

Collision detection between implicit objects is
quick and since they are represented by known equa-
tions. Thus they may be used as rough approxima-
tions of scene objects for quick rejection culling.

2.2 Types of Queries

The most straightforward collision query is the in-
tersection testing. It generate a boolean answer of
wether two objects are colliding or not. However it
is sometimes not enought to know if objects are col-
liding but also the intersecting parts must be found.
Determining a set of contact points, known as the
contact manifold, is a difficult problem. In some ap-
plications such as games, approximate queries may be
sufficient. Approximate query consist of formulating
the problem up to a given degree of tolerance.

If objects penetrate, one may need to find the
penetration depth value. The penetration depth of
a pair of intersecting objects is the shortest vector
over which one object needs to be translated in order
to bring the pair in touching contact.

2.3 Number of Objects

In a scene of n objects, O(n2) pairwise tests may be
needed to perform the collision between all objects.
Due to the quadratic time complexity, naively test-
ing every object pair for collision quickly becomes
too expensive even for moderate value of n. To re-
duce this number of pairwise test, a separation of the
collision handling in two phases may be done. The
resulting algorithm is known as a hybrid algorithm
composed of a broad and a narrow phase. The broad
phase identifies smaller groups of objects that may
be colliding, while the narrow phase constitues the
pairwise tests within subgroups. Figure 1 illustrates

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

how broad phase processing reduces the work load
through a divide and conquer strategy.

Figure 1: The broad phase identifies disjoint groups

3 Broad Phase: Refinement

Level

The broad phase of a collision detection algorithm is
often based on using bounding volumes and spatial
decomposition techniques in a hierarchical manner.
Hierarchical methods have the advantage that as a
result of simple tests at a given point in the object
hierarchies, branches below a particular node can be
identified as irrelevant to the current search and so
pruned from the search.

3.1 Octrees

Octrees are built by recursively sub-dividing the vol-
ume containing an object into eight octants, and re-
taining only those octants that contain some part of
the original object as nodes in the tree [18]. Such
a data structure is simple to produce automatically,
and lends itself to efficient and elegant recursive al-
gorithms. The disadvantage of this approach is that
each level of the hierarchy does not fit the underlying
object very tightly.

3.2 Sphere-Trees

Since spheres are rotationally invariant, it is very
fast to update them. It is very simple as well to
test for distances between them, and test for over-
laps. Those were the major advantages of using such
trees. The disadvantage is that spheres do not ap-
proximate certain types of objects very efficiently. In
order to improve the efficiency one can build first a
medial axis surface, which is a skeleton representation
of an object, and then placing the spheres upon this
to provide a tighter-fitting approximation to the ob-
ject. This approach was used in [19]. Figure 2 shows
a bounding sphere of a wrist bone.

Figure 2: Sphere Bounding Boxes of the Wrist Bones

3.3 C-Trees

It consists of a mixture of convex polyhedra and
spheres [20]. This has the advantage of choosing
primitives that best approximate the enclosed object,
but a major drawback is that the hierarchy must be
created manually.

3.4 Axis Aligned Bounding Boxes
(AABB)-Trees

This algorithm is the simplest one that could be used
in the broad phase [21]-[22]. For constructing the
AABBs, one need first to find the minimum and max-
imum point orthogonally projected onto the x, y and
z axis. Then, with these projections, intervals are
formed on each axis for each object. If different ob-
jects exist in the scene, three lists are constructed, one
list for each dimension. Each list contains the value
of the endpoints of the interval on the corresponding
axes. By sorting each list, the corresponding pair of
objects that are in contact may be determined. If two
objects are in collision, their corresponding AABBs

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

are also in collision. That is, two AABBs are in col-
lision if and only if their intervals along each axis
overlap. If the sum of the facets of the pair of objects
in collision is more than a certain threshold, the algo-
rithm divides the AABB into four subsets of AABBs
and considers four different objects. This step is done
by comparing the objects offline and it could be done
online as well. This process is only needed for huge
rendered objects in the scene that usually their ren-
dering time is much greater that their collision detec-
tion test time.

Two kind of AABB exists: Fixed and dynamic
size. With the fixed size AABB, boxes may be gen-
erated by taking the maximum and minimum of the
object with all the possible orientations. The fixed
size bounding boxes are simpler because there is no
need to recalculate the new maximum and minimum
of objects in each step movement. However, in some
cases of scene configuration, they are too much big-
ger than the objects, and as a consequence, they will
be always in collision between each other. This case
could be faced mostly with objects of longitudinal
shape. Figure 3 shows a fixed size AABB. The dy-
namic size AABB needs to be updated dynamically
at every time step.

Figure 3: AABB of the Wrist Bones

3.5 Oriented Bounding Boxes (OBB)-
Trees

The OBB-Tree is a hierarchical representation using
Oriented Bounding Boxes (OBBs) [11]-[12]. An OBB
is a rectangular bounding box at an arbitrary orienta-
tion in three dimensional space. In an ideal case, the
OBB would be oriented such that it encloses an ob-
ject as tightly as possible. In other words, the OBB
is the smallest possible bounding box of arbitrary ori-
entation that can enclose the geometry in question.
This approach is very good at performing fast re-
jection tests. The disadvantages of OBB-trees over

Sphere trees is that they are slower to update and
orientation sensitive.

3.6 K-DOPs

This approach uses hierarchies of Discrete Orienta-
tion Polytopes, which are convex polytopes whose
facets are determined by half spaces whose outward
normals come from a small fixed set of k orientations
[10]. Again, they implement it with a small num-
ber of highly complex objects, for the purposes of
haptic force-feedback. If there is a large number of
objects between which fast rejection or acceptance is
needed, the update time needed for these approxi-
mations is likely to add an unacceptable additional
burden. This approach is a generalization of AABBs
(which are actually 6-dops), and therefore also suffers
from the need for dynamic updating of the nodes.

3.7 Swept Sphere Volumes (SSV)

A swept sphere volume is a sphere that is swept out
along a geometric primitive, such as a point (a sphere)
line (a cylinder with rounded ends) or rectangle (a
cube with rounded edges and corners) [23]. These
volumes provide a means varying the shape of the
bounding primitive to achieve a tighter fit to the un-
derlying geometry, without the disadvantage of hav-
ing to compute them by hand. Although they have
similar performance results to OBB-trees, SSV have
potentially better fit and this leads to more accurate
collision tests, especially if no exact testing is per-
formed at the end of the narrow phase, e.g. in the
case of interruptible collision detection.

3.8 Minimum Volume Ellipsoidal Fit-
ting

Many algorithms exist for constructing the minimum
volume ellipsoidal fitting of a set of points [24]-[26].
An ellipsoid E(c, A) having minimum volume and
containing a set χ of m points could be represented
by the following equation where c is the center:

{x ∈ <d | (x − c)T A(x − c) ≤ 1} (1)

with χ = {xi, i = 1..., m | m ∈ <d}

Thus solving for A and c gives an ellipsoid that con-
tains χ. The main idea is to remove form χ points by
cardinality reduction. Figure 4 shows the ellipsoidal
envelops of the wrist bones while figure 5 shows the
second level of the ellipsoidal tree.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

Figure 4: Ellipsoidal Envelop of the Wrist Bones

Figure 5: Second level of the Ellipsoidal Tree

3.9 Other Bounding Volumes

In addition, many other types of volumes have been
suggested as bounding volumes. These includes Shell-
Trees [27], cones [28]-[29], cylinders [30], and zono-
topes [31]. The Shell-Tree consist of oriented bound-
ing boxes and spherical shells, which enclose curved
surfaces such as Bezier patches and NURBS. Zono-
topes are centrally symmetric polytopes of certain
properties. These shapes have not found widespread
use as bounding volumes, in part due to having ex-
pensive intersection tests. For this reason, they are
not covered in this overview.

4 Narrow Phase: Exact Level

The narrow phase of the hybrid algorithm tests
whether an impact point exists between a pair of ob-
jects and specifies the point of intersection.

4.1 Linear Programming Approach

In this approach, the collision detection problem is
first formulated as an optimization problem and then

solved by using Linear Programming [21], [32]. It is
a powerful and quick algorithm but it must be ap-
plied on a pair of convex objects at a time. Hence, in
this phase, each pair of convex objects in the scene is
treated separately. For non convex objects an algo-
rithm of decomposition into convex polyhedra should
be used first and then each convex part will be con-
sidered as an object.

In the formulation process, each facet i is rep-
resented by their planes inequality in the form of
aix + biy + ciz ≤ di. Any point lies in the object
must verify all the inequalities of the planes which
formed this object. The set of formulated inequalities
represents the constraints of the optimization prob-
lem. Having this formulation, if a point verifies two
sets of inequalities simultaneously, then this point be-
longs to their corresponding objects and so a collision
is detected at that point between those two objects.
Physically, the “less or equal” indicates the existence
of material inside the object and this mean that the
facets do not only separate two region in space but
they also label those separated regions. In addition
to the inequality constraints, a cost function is for-
mulated to construct the optimization problem. The
cost function as well as the type of optimization (min-
imization or maximization) is not important for this
application. For simplicity of implementation, this
paper assumes maximizing an objective cost function
in the form x + y + z. Hence, the collision detection
problem may be formulated as follows:

Maximize cT χ

Subject to Aχ ≤ b
(2)

Where χ=[x, y, z]T is the vector of variables to be
solved for, A is a matrix of known coefficients and b
and c are vectors of known coefficients:

A =

a1 b1 c1

a2 b2 c2

. . .

. . .

, b =

d1

d2

.

.

,

c =
[

1 1 1
]T

(3)

With the previous scenario, the number of con-
straints is equal to the sum of the facets in both
objects, which is usually very huge. In order to re-
duce the size of the problem constraints and decrease
the run time, the proposed algorithm solves the dual
problem. The general form of the dual problem may
be represented as follow:

Minimize bT λ

Subject to AT λ ≥ c
(4)

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

In the dual problem, the number of constraints
becomes constant (three) while the number of dual
variables λ varies depending on the original number
of the planes. This procedure can be applied only
on convex objects. Therefore, objects in the scene
should be divided into convex sub-objects.

4.2 Medial Axis

Let <3 be the Euclidean three-dimensional space, and
d, the Euclidean distance. Let X be an object in <3.
The skeleton Sk(X) of an object X , is the location
of the centers of maximal spheres included in X . A
sphere B included in X is said maximal, if there ex-
ists no other sphere included in X and containing
B [32]-[33]. The skeleton possesses many attractive
mathematical properties such as reversibility, homo-
topy, and invariance through translations and rota-
tions. The reversibility property, which allows recov-
ering the whole 3D volume from its skeleton, is a cru-
cial assumption in this method. The most attractive
property of the spheres is the rotational invariance:
A sphere is invariant to the rotation of the objects
and therefore its update cost is very small; no matter
what type of motion the bodies are going through the
spheres can be updated by simply translating their
centers. The reconstructed object from the medial
axis is then a set of overlapping circles. Those circles
cover exactly the entire object. In order to detect
collision between two circles one can simply verify
the positions of their centers (ci, cj). A collision is
occurring if the following equation is verified:

Xcj
− Xci

≤ ri + rj (5)

Where X = [x, y, z]

Figure 6: Medial Axis View of the Wrist Bones

4.3 Lin-Canny Algorithm

In practice, the objects that we deal with are often
in continuous motion. A standard way to handle this
situation is to discretize time, and at each time step,
compute the distance between the objects according
to their current position and orientation. If the time
step is small enough, the closest pair of features (ver-
tices, edges or faces) between two polyhedra will not
move very far from one time step to the next. This
coherence, together with convexity, motivates the ap-
proach of tracking the closest pair of features instead
of computing it from scratch at every time step. Lin
and Canny proposed the first algorithm (LinCanny)
that exploits coherence [14]. The algorithm starts
from the closest pair computed in the last time step,
and “walks” on the surface of polyhedra until reach-
ing the new closest pair. Convexity guarantees that
one can determine locally whether a pair of features
is the closest pair, and if not, a neighboring pair that
is closer. Once those features are known, the dis-
tance between two polyhedra is found and a collision
is declared when this distance falls below some ε.

The Lin-Canny algorithm does not handle pene-
trating polytopes, however, and if such a condition
arises the algorithm enters an infinite loop. A pos-
sible solution to this problem is to force termination
after a maximum iteration, and return a simple re-
sult stating that the objects have collided. How-
ever, this solution is quite slow, and no measure of
inter-penetration is provided. Inter-penetrating ob-
jects will occur very frequently unless they are moving
quite slowly, and/or if the detection time-step is quite
small. This is unlikely to be the case in real-time ap-
plications such as games and Virtual Environments.
If inter-penetration occurs, and more information is
needed about the exact time of contact, backtrack-
ing is necessary to pinpoint the exact instant in time
when collision occurred, a slow and cumbersome pro-
cess.

4.4 V-Clip Algorithm

The V-Clip [15] tracks closest pairs of features simi-
larly to the above-mentioned Lin-Canny algorithm.
It handles penetrating polyhedra. This capability
allows the algorithm to be extended to non convex
polyhedra by representing them as groups of convex
polyhedra. Objects may be decomposed using a con-
vex decomposition technique [22].

4.5 I-Collide Algorithm

The I-Collide is an interactive and exact collision de-
tection library for large environments composed of

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

convex polyhedra. Non-convex polyhedra may be de-
composed into sets of convex polyhedra, which may
then be used with this library. I-Collide exploit co-
herence (the property of a simulation to change very
little between consecutive time steps) and the prop-
erties of convexity to achieve very fast and exact col-
lision detection [16].

4.6 GJK algorithm

The GJK algorithm is a Simplex-based algorithm. A
simplex is the generalization of a triangle to arbitrary
dimensions. The approach in these cases is to treat a
polytope as the convex hull of a point set. Operations
are then performed on the simplex defined by subsets
of these points [17]. The main strength of this algo-
rithm is that, in addition to detecting whether two
objects have collided or not, it can also return a mea-
sure of interpenetration. This algorithm achieves the
same almost-constant time complexity as Lin-Canny,
while eliminating most of its main weaknesses.

5 Penetration Depth Computa-
tion

The penetration depth of a pair of intersecting objects
is the shortest vector over which one object needs to
be translated in order to bring the pair in touching
contact [34]. Methods for computing the penetration
depth are less common than those of collision detec-
tion. This section shows a novel method to calculate
this penetration depth vector.

Since the time step is small enough, one can ap-
proximate all the movements in the scene to be locally
translational without any LOD degradation. The
movement of the objects in the scene is considered to
be with constant velocity. Having this in hand, one
can reformulate the problem stated below in section
3.1. A variable t representing the time will be added
to the system and χ will be equal to [x, y, z, t]T . To
solve the problem one should minimize t. Thus prob-
lem 3 becomes as follows:

A =

a1 b1 c1 e1

a2 b2 c2 e2

. . . .

. . . .

, b =

d1

d2

.

.

,

c =
[

0 0 0 1
]T

(6)

Then, the problem is solved like as in section 4.1
and the result will be the penetration depth vector.

6 Conclusions

Virtual reality is becoming nowadays the most im-
portant tool used for testing and training. Since it
is expected to have an exact simulated environment,
collision detection is an essential issue that should be
treated and respected. In this paper an overview of
collision detection algorithms was shown. Those algo-
rithms were classified into two phases. The majority
of the collision detection algorithm are dependent on
the input data of the scene, i.e. the form that objects
are represented in the environment.

Bounding volumes are simple geometric shapes
used to encapsulate one or more objects of greater
geometrical complexity. Most frequently, spheres and
axis aligned boxes are used as bounding volumes. If
a really tight fit is required, oriented boxes or con-
vex hull may be used. Bounding volumes are used
as easy overlap rejection tests, before more expensive
tests are performed on the geometry enclosed within
them. As discussed in this paper, there are trade-offs
involved in the selection of bounding volumes shapes.
By using bounding volumes of tighter fit, the chance
of early rejection increases, but at the same time the
bounding volume tests become more expensive and
the storage requirement for the bounding volume in-
creases. Typically, bounding volumes are computed
in preprocessing step and, as necessary, transformed
with the bounded objects at runtime to match the
objects’ movements.

Collision systems work almost exclusively with
convex objects because they have certain properties
that make them highly suitable for intersection test-
ing. The only disadvantage of the linear program-
ming approach is the limitation of use with convex
objects only. This is due to the fact that convex
objects help the algorithms to converge quickly and
to report collision if it exists. This little obstacle
is easily overpassed by today’s techniques of convex
decomposition[22].

The multiple purpose of a collision detection al-
gorithm is an important issue. This is widely seen
in the linear programming approach shown in section
4.1. This algorithm is used as a collision detection
procedure and as a penetration depth vector calcula-
tor. This vector is important in predicting collision
especially for motion planning problems. Some algo-
rithms used for collision detection are based on the
assistance of the hardware especially on the graph-
ics processing units. They were not discussed in this
paper because they are only used in a very restriced
domain. Finally, even that a huge number of colli-
sion detection procedures exist nowadays, this area
of research is still wide open for new innovations.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

References

[1] O. O’Reilly, P. Papadopoulos, G. Lo, P. Varadi.
“Models of Vehicular Collision: Development
and Simulation with Emphasis on Safety”. Tech-
nical Report UCB-ITS-PRR-98-10, University of
California, Berkly, 1998.

[2] H. Cakmak, U. Kuhnapfel. “Karlushe Endo-
scopic Surgery Trainer for Minimally Invasive
Surgery in Gynaecology”. Proceedings of 13th

International Congree on Computer Assisted
Radiology and Surgery, France, June 1999.

[3] S. Cotin, H. Delingette, N. Ayache. “Real-time
Elastic Deformations of Soft Tissues for Surgery
Simulation”. IEEE Transactions on Visualiza-
tion and Computer Graphics, volume 5 (1),
1998.

[4] C. Fares, Y. Hamam, M. Couprie, R. El-Abyad.
“Virtual Arthroscopic Surgery Trainer: A Vir-
tual Reality Based Training System for Arthro-
scopic Surgery”. Proceedings of BioMedSim03,
University of Balamnd, Lebanon, May 2003.

[5] B. Honzik, Y. Hamam. “Obstacle Avoidance for
Non-Point Mobile Robots”. Proceedings of 3rd

IMACS Symposium on Mathematical Modeling,
pages 887–890, 2000.

[6] S. Oh, H. Kim, K. Wohn. “Collision Handling for
Interactive Garment Simulation”. Proceedings of
VSMM, 2002.

[7] I. Rudomin, J. Castillo. “Realtime Clothing:
Geometry and Physics”. WSCG 2002 Posters,
Czech Republic, pages 45–48, 2002.

[8] C. Koh, Z. Huang. “A Simple Physics Model to
Animate Human Hair Modeled in 2D Strips in
Real Time”. Proceedings of Computer Anima-
tion and Simulation, 2001.

[9] K. Chung, W. Wang. “Discrete Moving Frames
for Sweep Surface Modeling”. Proceedings of Pa-
cific Graphics, Hsinchu, Taiwan, 1996.

[10] J. Klosowski, M. Held, J. Mitchell, H. Sowiz-
ral, K. Zikan. “Efficient Collision Detection Us-
ing Bounding Volume Hierarchies of k-DOPs”.
IEEE Transactions on Visualization and Com-
puter Graphics, volume 4 (1), pages 21–36, 1998.

[11] D. Eberly. “Dynamic Collision Detection using
Oriented Bounding Boxes”. Technical Report,
Magic Software, 2002.

[12] D. Schmalstieg, R. Tobler. “Real-Time Bound-
ing Box Area Computation”. Technical Report
TR-186-2-99-05, Vienna University, 1999.

[13] F. Ganovelli, J. Dingliana, O. Sullivan. “Bucket-
Tree: Improving Detection Between Deformable
Objects”. Proceedings of Spring Conference in
Computer Graphics, Bratislava, 2000.

[14] M. Lin. “Efficient Collision Detection for Ani-
mation and Robotics”. PhD Thesis, University
of California, Berkeley, USA, 1993.

[15] B. Mirtich. “V-Clip: Fast and Robust Polyhe-
dral Collision Detection”. ACM Transactions on
Graphics, volume 17 (3), pages 177–208, 1998.

[16] J. Cohen, M. Lin, D. Monacha, M. Ponamgi. “I-
collide: an Interactive and Exact Collision De-
tection System for Large-Scale Environments”.
Proceedings of ACM interactive 3D graphics in-
proceedings, pages 189–196, 1995.

[17] G. Bergen. “A Fast and Robust GJK Imple-
mentation for Collision Detection of Convex Ob-
jects”. Journal of Graphics Tools, volume 4 (2),
1999.

[18] H. Sammet, R. Webber. “Hierarchical Data
Structures and Algorithms for Computer Graph-
ics”. IEEE Computer Graphics and Applica-
tions, volume 4 (3), pages 46–68, 1998.

[19] I. Palmer, R. Grimsdale. “Collision Detection
for Animation using Sphere Trees”. Computer
Graphics Forum, volume 14 (2), 1995.

[20] J. Youn, K. Whon. “Realtime Collision Detec-
tion for Virtual Reality Applications”. Proceed-
ings of IEEE Virtual Reality Annual Interna-
tional Symposium, pages 18–22, 1993.

[21] C. Fares, Y. Hamam.“Collision Detection Be-
tween Virtual Objects: Application in Minimally
Invasive Surgery”. Proceedings of ESMc03, Uni-
versity of Naples II, Naples, Italy, October 2003.

[22] C. Fares, Y. Hamam. “Collision Detection Be-
tween Virtual Objects Using Optimization Tech-
niques”, In John Cagnol and Jean-Paul Zolesio,
editors, Information processing: Recent Mathe-
matical Advances in Optimization and Control.
Presses de l’Ecole des Mines de Paris, 2005.

[23] E. Larsen, E. Gottschalk, M. Lin, D. Monacha.
“Fast Proximity Queries with Swept Sphere Vol-
umes”. Technical Report, Dept. of Computer
Science, University of North Carolina, 1999.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

[24] C. Fares, Y. Hamam. “Collision Detection for
Virtual Reality Using Ellipsoidal Fitting”. Pro-
ceedings of BioMedSim05, Sweeden, 2005.

[25] E. Rimon, S. Boyd. “Obstacle Collision Detec-
tion Using Best Ellipsoid Fit”. Journal of Intel-
ligent and Robotic Systems, volume 18, pages
105–126, 1997.

[26] L. Pronzato. “Acceleration of D-Optimum De-
sign Algorithms by Removing Non-Optimal Sup-
port Points”. Technical Report I3S/RR-2002-05-
FR, Laboratoire I3S Informatiques Signaux et
Systèmes de Sophia Antipolis, Mars 2002.

[27] S. Krishnan, A. Patteka, M. Lin, D. Monacha.
“Spherical Shell: A Higher Order Bounding Vol-
ume for Fast Proximity Queries”. Proceedings
of 3rd International Workshop on Algorithmic
Foundations of Robotics, pages 177–190, 1998.

[28] M. Held. “ERIT: A Collection of Efficient and
Reliable Intersection Tests”. Journal of Graphi-
cal Tools, volume 2 (4), pages 25–44, 1997.

[29] D. Eberly. “Intersection of a Sphere and a Cone”.
Technical Report, Magic Software, March 2002.

[30] D. Eberly. “Intersection of Cylinders”. Technical
Report, Magic Software, November 2000.

[31] L. Guibas, A. Nguyen, L. Zhang. “Zonotopes
as Bounding Volumes”. Proceedings of 14th An-
nual ACM-SIAM Symposium on Discrete Algo-
rithms, Baltimore, USA, January 2003.

[32] C. Fares, Y. Hamam. “A Hybrid Algorithm
for Collision Detection”. Proceedings of the Eu-
roSim04, ESIEE Paris, France, September 2004.

[33] F. Meyer. “Digital Euclidian Skeleton”. Visual
Communication and Image Processing, volume
1360, pages 251–262, 1990.

[34] C. Fares, Y. Hamam.“Proximity Queries Com-
putation Using Optimisation”. Proceedings of
ECCO XVII, AUB, Lebanon, June 2004.

About the Author

- Charbel Fares is a Ph.D. student at Laboratoire
Algorithmique et Architecture des Systmes Informa-
tiques (LA2SI), of the Ecole Supérieure d’Ingénieurs
en Electronique et Electrotechnique (ESIEE),
France. His contact email is c.fares@esiee.fr.

- Yskandar Hamam is a professor at LA2SI of ESIEE
and a member of Laboratoire d’Instrumentation et
de Relations Individu Systme (LIRIS), CNRS FRE
2508, of the University of Versailles Saint-Quentin-
En-Yvelines (UVSQ), France. His contact email is
y.hamam@esiee.fr.

International Conference Graphicon 2005, Novosibirsk Akademgorodok, Russia, http://www.graphicon.ru/

