
International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

One approach to C++ look at DirectDraw and Direct3D

Victor A. Debelov, Yuri A. Tkachov

Institute of Computational Mathematics and Mathematical Geophysics

of SB RAS, Novosibirsk, Russia

Abstract

Microsoft DirectX [1] becomes more and more popular
among users of Windows platforms. Our interests concern
two main graphical parts, namely: DirectDraw (2D
dynamic graphics) and Direct3D (only Retained Mode is
considered). They are developed during several versions of
DirectX almost continuously and their functionality grows
version by version. Although DirectDraw and Direct3D are
considered as tools for C/C++ programmers, they are really
instead collections of COM-objects, or interfaces. The
relationships between these interfaces are not clearly
visible, even from a second look. For example, Direct3D's
Retained Mode layer contains as many as 33 interfaces, and
correspondingly thousand of functions as well as many
other parameters that control the rendering process.

The system developed by authors and suggested in the
given report, is based on the OO approach. It consists of a
collection of basic classes (objects), contrary to COM-
interfaces. These objects wrap and expose properly
gathered and organized functions of DirectX thus hiding
extra possibilities of DirectDraw and Direct3D. We
implemented a kernel of the system in Microsoft Visual
C++ environment. Construction of the system is transparent
and can be considered as guidelines for further
improvements or refinements.

A collection of basic classes for developing 2D
applications includes two main classes. MainObject
represents the «world» or the main frame where all other
objects operate and cooperate with each other. The second
main class is a Sprite that is an abstraction of an object that
may have its’ own size, view, position in the «world» and a
couple of other attributes. Several helper classes for
managing Sprites and MainObject are also developed.
Analogous construction was done for 3D applications -
D3DMainObject is a scene and several classes help to
represent: geometry and transformations (second main
class D3DFrame), lights, animations, etc.

In our opinion such a system should have a great impact to
those who begin to study how to create 3D graphical
dynamic applications on the base of DirectX.

Keywords: DirectDraw, Direct3D, OO computer graphics
system, MSDeveloper Studio.

1. INTRODUCTION

We can recognize a lot of levels of computer graphics
functionality in modern days. For example, let us consider
the situation of Windows-95/NT in brief, assuming the
following levels of complexity.

Level of driver capability. An application programmer has
at his disposal the features that are the fastest and closest
match to a particular hardware architecture. It means that
(depending on his skills) he can reach an exceptionally
high level performance and productivity of his graphical
application. On the downside, it can require a major
commitment of time and effort, that in some cases produces
less than the desired or expected results.

Windows GDI (graphical device interface). As a general
rule, GDI is somewhat easier to use. At least the problem
of program portability is eliminated, e.g., in Windows
environments. However, the set of available graphic
primitives is still insufficient, as are a set of available set of
transformations.

DirectDraw [2] of Microsoft DirectX. Another incarnation
of GDI. It suggests very poor set of operations and
primitives optimized for achievement of maximum drawing
speed. In fact, there exists only one primitive – so called
Drawing Surface and a set of operations to manipulate a
number of such surfaces. The set of operations includes
direct access (on pixel level) to a surface and bit block
transfer operations (BitBlt) between two surfaces.

Let us consider the case of 3D graphics and focus on a
layer structure of 3D functionality.

GDI or DirectDraw. All particulars of the 3D world are
left to application programmers.

OpenGL [3] or Direct3D's Immediate Mode [4]. A user
is still devoted to annoying procedures to convert the 3D
world of the application to a restricted set of instructions.
Nevertheless, he works already in a 3D environment
(coordinating systems, camera, transformations, real light
sources, etc.).

Direct3D's Retained Mode – D3DRM [5]. A user works
in the real 3D world. The mechanism of frames allows him
to construct very complex scenes quickly and easily. At the
same time, he loses the productivity of his application but

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

... gains more time for its’ development. Notice that the
power of the primitives' set and a collection of
transformations are increased, while we constrict our task
(locally), and agree to lose some flexibility in an
application.

In our opinion, the fastest preparation of a 3D scene,
especially of its layout, is a critical point of most
applications. Especially when a creator assigns proper
places for all actors (geometric objects, lights, shadows,
etc.). Very often, the design process begins from creating a
prototype application, which is evaluated and then
converted to the final application via revolutionary or
evolutionary process [6].

One known attempt to increase the level of functionality of
3D graphics in the Windows'95 environment was described
in [7]. The object-oriented library was created as a cover of
COM-interfaces of DirectDraw and Direct3D.

We also developed the C++ shell [8, 9] for functions of
D3DRM COM-objects. It is too difficult to choose one
approach over the other, as we only list our several main
design requests herein:
• to minimize the number of basic C++ classes;
• to hide particulars of concrete interfaces, especially

"driver-dependent" types;
• to minimize the efforts necessary to learn and become

familiar with the system, while simultaneously
providing the significant functionality;

• to make the system architecture open, i.e. easy to
extend and improve.

Thus we suggest the C++ 3D graphics tool which is
situated just above D3DRM - less flexibility and
functionality but less time to comprehend. So, why did we
choose DirectDraw/Direct3D instead of OpenGL with its
advanced development tools? Well, one of the features of
the basic Direct3D object (frame) had convinced us – the
frame's intrinsic velocity and rotational speed and
automatic reaction to scene heartbeats.

Although we focussed mainly on 3D functionality and
developed a tool for 3D graphics programming, we
nevertheless needed to comb 2D graphics (DirectDraw) in
the same manner. Below, the exposition of the system will
be presented in the opposite order. The construction of the
2D layer is repeated during the construction of 3D case
scenario.

2. 2D DYNAMIC GRAPHICS

2.1 Brief Overview of DirectDraw
DirectDraw is a set of COM-interfaces. In order to use it in
your program you have to get pointer to the main (or
primary) IDirectDraw interface by one means or another.
Having this pointer you are able to gain access to other
DirectDraw interfaces like IDirectDrawSurface or

IDirectDrawPalette. A brief description of the role of the
interfaces is as follows.

Interface DirectDraw is an abstraction (or representation)
of a graphic hardware of the computer as a whole. The
methods of the interface allow changes to graphic modes
(resolution, color depth and even display refresh rate) and
to access other interfaces that represent specific parts of a
graphic hardware.

IDirectDrawSurface corresponds to the graphic memory.
To be more precise, each pointer to this interface represents
some part of the graphic memory. It allows direct access to
the video buffer and several another methods of video
memory manipulation. There is one main (or primary)
surface among all other surfaces. It represents the current
visible state of the application window (or a whole screen
if the application is running in full screen mode). In other
words, the contents of this primary surface defines contents
of the application window. Therefore, there is only one
way to change contents of the window - you have to
change contents of the primary surface. The most exciting
feature of the surfaces is the ability to perform bitblt
operations between different surfaces with maximum
possible efficiency.

It is important to understand that the application should use
at least two surfaces. The primary surface holds the current
state of the applications window (current frame). The
second (or back) surface is used for preparation of the next
frame. If the state of the primary surface has to be changed,
the process of changing must be hidden from the user. Any
application must prepare the next frame in the back surface
and then blit the whole buffer or relevant part of it into the
primary surface.

Actually any application will use a lot of surfaces. Besides
the primary surface and the back surface, it is very
convenient to use surfaces (usually of small sizes) for
storing sprites. Each sprite represents some object that can
have its’ own size and position on the screen. When a
position or another visual attribute of the sprite has
changed, it is necessary to refresh the back surface by
blitting of the sprite surface to the back surface and then to
refresh the primary surface by blitting of the back surface
to the primary surface.

The interface IDirectDrawPalette represents the color
lookuptable. It allows direct changing of hardware palettes
in palletized modes (4, 16 or 256 colors).

The last but not least interface is IDirectDrawClipper. It
does not represent any part of a graphic hardware, but its
role is very important in establishing the proper
communication with windows of another currently running
application in the windowed (not full screen) mode. A
clipper object holds one or more clip lists. A clip list is
composed of one bounding rectangle, or a list of several
bounding rectangles that describe an area or areas of a

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

surface to which you are allowed to blit. So, if the
application window is partially overlapped by another
window (the usual situation in the windowed environment)
then the clipper object looks after all windows and all blit
operations in order to prevent drawing in the alien window.
You have almost nothing to do with this object. You have
just to create the object and connect your application
window with it. It will automatically do the rest for you.

The model of DirectDraw functioning is quite simple. To
develop a fully functional DirectDraw application it is
necessary to:

1. Create a window just like in any other windowed
application. This window will receive user input in the
form of keyboard and mouse messages.

2. Create a DirectDraw main object and associate it with
that window. The association with the window is
absolutely necessary because it is the window that
defines the position and sizes of the DirectDraw output
on the screen.

3. Create a clipper and assign the window to it.

4. Create the primary surface and the back surface. The
sizes of these surfaces must be equal to the sizes of the
window, associated with the DirectDraw object.

5. Create a couple of additional surfaces for the sprites.

6. Make the main application loop that will change the
state of the primary surface according to the user input,
the states of the sprites, and internal logic of the
application.

2.2 Basic DD Classes
The set of developed classes reflects the set of generic
DirectDraw objects and logical interrelations among them.

The class CDDMainWnd provides the basic functionality
of the application window with DirectDraw. The class
holds the object of the class CDDMainObj and provides a
proper cooperation between the window and this object.
Specifically, it looks after window sizes and calls relevant
methods of the CDDMainObj to ensure proper sizes of the
primary surface which must be equal to window sizes. This
class also receives user input messages from the mouse and
keyboard.

The CDDMainObject keeps tracks of all subordinate
objects like the primary and back surfaces, sprites, palettes,
as well as the clipper, and organizes proper relationships
between all of them. In particular, it refreshes the primary
surface as soon as the state of some sprite or sprites has
changed. It is also responsible for cleaning up of all objects
when the main object is destroyed.

The class CDDSprite contains one or more surfaces which
hold visual representations of the sprite. Surfaces of the
sprite may be shared with other sprites. So you can

instantiate any number of sprites that has the identical
visual representation. It is useful when the application has
many objects of the same type placed in different positions.
This allows saving the video memory which is a costly and
limited resource.

3. C++ ENVELOPE OF DIRECT3D'S
RETAINED MODE

Screen snapshot, dynamic 3D application, using
different classes of geometric forms, shadows, textures, and
materials:

3.1 Brief Overview of D3DRM
First of all, let us consider what categories of information
should a user know in order to prepare his D3DRM
application (the list taken from [5]):

♦ Functions and Interfaces

• Callback Functions

• Interfaces

• Nonmember Functions

♦ Data Types

• Constants

• Enumerated Types

• Structures

♦ Other Topics

• Return Values

• Further Reading

This information is superimposed with the process of
evolution of DirectX D3DRM SDK. If interfaces of SDK
version 3.0 and SDK version 5.0 are allowed to be used
jointly, then SDK version 6.0 rejects such a possibility to
mix different versions of similar interfaces. The diagram
beneath shows the interface hierarchy and the fact that the
new version 6.0 of D3DRM supports only new interfaces

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

and renders old versions as obsolete or replaced (marked as
RP). The next but last obstacles, which a newcomer
encounters during his study of D3DRM, are different
collections of examples supplied with SDK [10] or
examples found on the Internet as in [11]. Note: Some of
the examples include applications that use outdated
interfaces.

The rendering process is controlled via many parameters,
which are set using different interfaces. The relationship
between these settings is not as obvious as one would
expect or hope for.

We would like to point out that the design of Direct3D
contains several constraints that are difficult to understand.
For example: "Direct3D allows an application to have
several viewports, but each light may be attached to only
one of them".

Conversely, we suggest the approach to create a user- (or
application-) oriented C++ shell for D3DRM but the
complete system. This approach is supported by the
implemented set of basic classes and capabilities to extend
and improve them in any desired direction.

Direct3D Retained Mode Interface Hierarchy
 IUnknown
 |
 +--IDirect3DRM (RP)
 +--IDirect3DRM2 (RP)
 +--IDirect3DRM3
 |
 +--IDirect3DRMArray
 | +--IDirect3DRMAnimationArray
 | +--IDirect3DRMDeviceArray
 | +--IDirect3DRMFaceArray
 | +--IDirect3DRMFrameArray
 | +--IDirect3DRMLightArray
 | +--IDirect3DRMObjectArray
 | +--IDirect3DRMPicked2Array
 | +--IDirect3DRMPickedArray
 | +--IDirect3DRMViewportArray
 | +--IDirect3DRMVisualArray
 |
 +--IDirect3DRMObject
 | +--IDirect3DRMAnimation (RP)
 | +--IDirect3DRMAnimation2
 | +--IDirect3DRMAnimationSet (RP)
 | +--IDirect3DRMAnimationSet2
 | |
 | +--IDirect3DRMDevice (RP)
 | | +--IDirect3DRMDevice2 (RP)
 | |
 | +--IDirect3DRMDevice3
 | +--IDirect3DRMFace2
 | +--Iirect3DRMInterpolator
 | +--IDirect3DRMLight
 | +--IDirect3DRMMaterial (RP)
 | +--IDirect3DRMMaterial2
 | |
 | +--IDirect3DRMViewport (RP)
 | +--IDirect3DRMViewport2
 | |
 | +--IDirect3DRMVisual
 | | +-IDirect3DRMFrame (RP)
 | | | +-IDirect3DRMFrame2 (RP)
 | | +-IDirect3DRMFrame3

 | | |
 | | +-IDirect3DRMMesh
 | | +-IDirect3DRMMeshBuilder (RP)
 | | | +-IDirect3DRMMeshBuilder2 (RP)
 | | +--IDirect3DRMMeshBuilder3
 | | |
 | | +--IDirect3DRMProgressiveMesh
 | | |
 | | +--IDirect3DRMShadow (RP)
 | | +--IDirect3DRMShadow2
 | | |
 | | +--IDirect3DRMTexture (RP)
 | | | +--IDirect3DRMTexture2 (RP)
 | | +--IDirect3DRMTexture3
 | | |
 | | +--IDirect3DRMUserVisual
 | |
 | +--IDirect3DRMWinDevice
 | |
 | +--IDirect3DRMWrap
 |
 +--IDirect3DRMObject2

3.2 Main Notions
The main object of D3DRM is a scene – or 3D world. It
consists of a set of geometric objects, a set of light sources,
and a set of decals.

Scene as a whole is characterized by the following
features:

1. Left-handed coordinate system

2. Camera and its parameters

3. Viewport, background color, background image

4. Ambient light, its intensity and color

5. Fog, by default is absent

6. Shading mode: flat or Gouraud

7. Fill mode: points, wireframe, solid

8. Tick – heartbeat of a scene (enabled, disabled)

To achieve this we need to apply several methods of
different COM-interfaces of D3DRM, in order to
implement such a complex object.

Geometric objects. Only one-sided surfaces are
recognized by D3DRM. All surfaces are given as meshes.
D3DRM suggests several ways to define meshes. In our
system we select the only interface –
IDirect3DRMMeshBuilder (or *2, or *3).

Light sources. All types of light sources are introduced in
our system: point, parallelpoint, directional, spotlight.
Ambient light was stated as a feature of a whole world, as
was mentioned above.

Decals. Rectangular flat posters (analogs of sprites) filled
with specified texture are called decals. A decal has a fixed
orientation with respect to camera.

Also, we distinguish such qualities as follows.

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

Textures – images, which can be wrapped onto surfaces –
assigned to meshes.

Materials – light reflection properties of scene surfaces.

Animations – descriptions of dynamic behaviors of world
objects – time dependencies of position, size, orientation
with respect to other objects. Time is governed by the
heartbeats of a scene.

3.3 Basic 3D Classes
CD3DMainObj – the class of 3D world. Its hidden function
is to be an owner of all allocated objects as a means to
watch after memory usage. A user creates his own scene as
an object of an inherited class and thus gets all its
functionality: fog, ambient light, camera, etc.

CD3DFrame – the second important class in the design.
This class defines the object frame.

1. A frame can be seen as a model space with its’ own
coordinate system

2. Only the frame contains the mesh.

3. The texture object, material object and color can be
assigned only to a mesh (meshbuilder).

4. The mesh shadows are added to the frame of that
mesh.

5. A frame with a mesh is a leaf frame of a geometric
construction.

6. A frame can be included into another frame (node
frame) with the help of some affine transformation.

7. Different kinds of frames are identical in most
respects.

8. Each frame may have rotational and linear velocities,
which allow Direct3D to automatically change frame
position and orientation at each scene heartbeat.

9. A scene is a frame too.

10. All objects that have a position or a direction are
frames also such as lights, camera, decals, etc..

11. It is recommended to build all basic geometric shapes
as classes inhereted from CD3DFrame class, e.g.,
CD3DConeFrame - side surface of a cone.

12. CD3DMainObj class is declared as

class CD3DMainObj : public CD3DFrame

 and therefore a user has access to all properties of
frames while constructing his scene, the object
inherited from the CD3DMainObj class.

CD3DTexture – the class that defines a texture object
which can be applied to some leaf frames (i.e., directly to
their meshes). Note that we do not create the special class
that covers the Wrap interface of D3DRM. Simply, the

frame class has special methods for applying textures to a
mesh (flat, cylindrical, spherical, chrome), if it is a frame
with a mesh. Moreover, there exists the only way of
defining of a texture image. It is loading it from file. If a
user wishes more ways, he can easily add them by
extending the system.

CD3DDecal – this class is derived from frame and texture
classes. Its position is controlled as a position of a frame.
Its image and properties (transparency, etc.) are taken from
the corresponding texture object.

CD3DMaterial – is the objects class, which defines
specular, emissive and diffuse reflection properties, and
can be applied to any frame, even if it has a tree-like
structure. In the latter case, the material object is assigned
to all of the leaf frames down the hierarchy.

CD3DAnimation – is the object, which can be attached to
any frame.

Lights are considered as frames (special class
CD3DLightFrame) in a case when they are assigned to
necessary positions or directions.

CD3DFrame - generic class

 CD3DLightFrame - resumptive light object

 CD3DDirectionalLight - particular light object

 CD3DParallelPointLight

 CD3DPointLight

 CD3DSpotLight

CD3DCameraFrame – is the artificial class. It was
introduced in order to control camera movements and
orientations as usual frame.

4. CONSLUSION

The given design of C++ library as a shell above
DirectDraw and D3DRM is simple but powerful enough.
The developed system of classes can serve as a good first
3D tool for newcomers of 3D graphics. It represents a tool,
which allows a user to create an acceptable prototype of an
application in a short enough period of time. Then, the
prototype can be transformed to a final application by
means of evolution when a programmer creates the
necessary absent classes or extends functionality of existent
ones. In the case of insufficient productivity of the
prototype, a programmer may select the revolutionary way
– the prototype should be re-programmed, e.g., using
Direct3D's Immediate Mode.

Initially, we propose to create this C++ tool as an
improvised means for a quick preparation of 3D scenes
(rough estimates of geometry and lights) in our
experiments with the radiosity equation. Just as we had

International Conference Graphicon 1999, Moscow, Russia, http://www.graphicon.ru/

found its usefulness, our next step consisted in the
development of the given tool.

The C++ shell described in the given report was used as a
canvas of lectures and seminar lessons of the course
"Computer Graphics" at the Novosibirsk State University.

5. ACKNOWLEDGEMENTS

This work is supported in part by the Russian Foundation
for Basic Research under a grant No. 99-01-00577 and the
special federal program "Integration of Science and
Education" under a project No.274 (course "Computer
Graphics").

Authors are grateful to Dr. Viktor Sirotin for his permanent
interest to this work and valuable remarks.

6. REFERENCES

[1] http://www.microsoft.com/directx/developer/informat
ion/default.asp - Microsoft DirectX developer
resources start page.

[2] B.Bargen, T.P.Donnelly. Inside Directx. Microsoft
Press, 1998.

[3] http://www.opengl.org/Documentation/Specs.html
OpenGL 1.1 Specification.

[4] M.Stein, E.Bowman, G.Pierce. Direct3d : Professio-
nal Referenc. New Riders Publishing, 1997.

[5] http://www.microsoft.com/directx/dxm/help/d3drm/c-
frame.htm#default.htm

[6] H.R. Hartson, D. Hix. Human-Computer Interface
Development: Concepts and Systems for its
Management. ACM Computing Surveys, Vol.21,
No.1, 1989, p. 5-92.

[7] Nigel Thompson. 3D Graphics Programming for
Windows 95. Microsoft Press, 1996.

[8] V. Sirotin, V. Debeloff, Urri. DirectX-Program-
mierung mit Visual C++ 6. Addison-Wesley, 1999.

[9] В.А. Дебелов, Ю.А. Ткачев. Объектно-ориенти-
рованная система машинной графики для
Windows (C++ и Microsoft DirectX). Изд-во СО
РАН, 1999, в печати (in Russian).

[10] http://www.microsoft.com/directx/dxm/help/d3drm/o
view/samples.htm - up to date samples.

[11] http://www.geocities.com/~directx/articles.html

Authors:

Laboratory of numerical analysis and computer graphics,
Institute of Computational Mathematics and Mathematical
Geophysics (former Novosibirsk Computing Center) of
Siberian Branch of RAS.

Yuri A. Tkachov - researcher

 E-mail: urri@oapmg.sscc.ru

Victor A. Debelov - Ph.D., senior researcher. A part-time
professor of Novosibirsk State University

 E-mail: debelov@oapmg.sscc.ru

Screen snapshot: static 3D application, usage of different
classes of geometric forms, textures with transparency (i.e.
a window, river), materials, decal with transparency
(bicycle).

