An Adaptive Model for Objects Representation in 3D Computer Graphics

A. D. Kapustin, J. G. Fedorova, T.V. Firsova, A.V. Churbanov,

© 1999 - NSTLab, Nizhny Novgorod, Russia
Goal and Solution

- Create software system to provide fast and quality rendering of surfaces including tens thousands polygons on PC-workstations in real-time

- Use adaptive surface representation (multi-resolution - MRM) based on multi-triangulation structure

Note: Surface represented by triangulation in 3D
Motivations

- Adaptive model structure must be suitable for various types of surfaces: terrain and free-form
- Surface LOD (approximation) extraction algorithm should support real-time rendering
- Provide surface view-dependent LODs with considerable reduction of polygons number
- Provide smooth transitions between sequential frames at small changes of the view parameters (e.g. viewpoint, view direction, field of view)
- Should exist a consistent and direct relationship between the input parameters to the LOD algorithm and resulting image quality

Note: LOD (level-of details)
Multi-triangulation constructing is guided by local updates of surface triangulation.
DAG construction based on mesh modifications

Mesh modification engine - refinement or decimation

Surface triangulation (triangle mesh) initialization

DAG initialization: create Source and Drain Nodes and Arc marked by all triangles of triangulation

Triangulation modification.
On output: triangles of Update region, their attributes (triangles errors & etc)

Create New Node marked by triangles of Update Region

Browse all Arcs directed to Drain Node

Redirect or edit browsed Arcs

Create new Arc directed from New Node to Drain Node and marked by triangles of Update Region
Surface LOD extraction

Define in every P (point of space \mathbb{R}^3) threshold function $\tau(P): \mathbb{R}^3 \rightarrow \mathbb{R}$

Some Triangle will be acceptable in the surface LOD if $\text{triangleError} < \min(\tau(P))$, \min over $P \subset \text{Triangle}$

triangleError is output of Mesh Modification algorithm
τ is a parameter of Extraction algorithm

Top-down approach

1. Initialize the Cut of the DAG by Source node triangles
2. For every triangle in the Cut
 if $\text{triangleError} > \min(\tau(P))$
 add triangle into ‘Bad Triangles’ Queue
3. While ‘Bad Triangles’ Queue is not empty:
 For every Triangle of the Queue:
 if $\text{triangleError} > \min(\tau(P))$
 add downward triangles into Cut Queue
 else
 add triangle to the Cut
View-dependent LOD of Free-form surface

Initial model, 39700 triangles

Model LOD at front view, 8700 triangles reduction ~ 0.2
Source object
29308 triangles

Reduction 0.05
1727 triangles
LODs of architecture

Source model
41259 triangles

Reduction 0.2
8251 triangles

Reduction 0.05
2062 triangles

Reduction 0.01
412 triangles
View-dependent LODs while rendering